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Network analysis: a brief overview and tutorial
David Hevey

School of Psychology, Trinity College Dublin, Dublin, Ireland

ABSTRACT
Objective: The present paper presents a brief overview on network
analysis as a statistical approach for health psychology researchers.
Networks comprise graphical representations of the relationships
(edges) between variables (nodes). Network analysis provides the
capacity to estimate complex patterns of relationships and the
network structure can be analysed to reveal core features of the
network. This paper provides an overview of networks, how they
can be visualised and analysed, and presents a simple example of
how to conduct network analysis in R using data on the Theory
Planned Behaviour (TPB).
Method: Participants (n = 200) completed a TPB survey on regular
exercise. The survey comprised items on attitudes, normative
beliefs, perceived behavioural control, and intentions. Data were
analysed to examine the network structure of the variables. The
EBICglasso was applied to the partial correlation matrix.
Results: The network structure reveals the variation in relationships
between the items. The network split into three distinct
communities of items. The affective attitude item was the central
node in the network. However, replication of the network in larger
samples to produce more stable and robust estimates of network
indices is required.
Conclusions: The reported network reveals that the affective
attitudinal variable was the most important node in the network and
therefore interventions could prioritise targeting changing the
emotional responses to exercise. Network analysis offers the potential
for insight into structural relations among core psychological
processes to inform the health psychology science and practice.
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Introduction

Health psychology research examines how the complex interactions between biological,
psychological, and social factors influence health and well-being. For example, the UK
Foresight map of obesity (see https://www.gov.uk/government/collections/tackling-
obesities-future-choices) provides a comprehensive representation of the complex
system of over 300 relationships between over 100 variables and obesity (Finegood,
Merth, & Rutter, 2010). The developers of the map assumed that obesity is the result of
the interplay between a wide variety of factors, including a person’s physical make-up,
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eating behaviour, and physical activity pattern. The system reflects the relevant factors and
their interdependencies that produce obesity as a behavioural outcome. The variables were
classified into various categories of causal factors; for example, social psychological factors
(e.g. peer pressure), individual psychological factors (e.g. stress), environmental factors
(e.g. the extent to which one’s environment makes it easy to engage in regular walking),
and individual physical activity factors (e.g. functional fitness). On the basis of expert aca-
demic opinion the Foresight report authors proposed that the variables in the system not
only influence obesity, but can also have positive (e.g. high levels of stress cause high levels
of alcohol consumption) and negative (e.g. high levels of stress cause low levels of physical
activity) effects on each other, some have distal effects whereas others have proximal
effects, and effects can be unidirectional (e.g. social attitudes towards fatness causes con-
ceptualisations of obesity as an illness) or reciprocal (e.g. physical activity causes func-
tional fitness, which causes physical activity). Networks are a fundamental characteristic
of such complex systems; consequently, health psychological science can benefit from con-
sidering the network structure of the phenomena that it seeks to understand. It has been
argued that networks pervade all aspects of human psychology (Borgatti, Mehra, Brass, &
Labianca, 2009), and in the past decade network analysis has become an important con-
ceptual and analytical approach in psychological research. Although network analysis has
a long history of being applied in causal attribution research (e.g. Kelly, 1983) and social
network analysis (Clifton &Webster, 2017), its broader potential for psychological science
was highlighted over a decade ago by van der Maas et al. (2006). The frequently reported
patterns of positive correlations between various cognitive tasks (e.g. verbal comprehension
andworkingmemory) are typically explained in terms of a dominant latent factor, i.e. the cor-
relations reflect a hypothesised common factor of general intelligence (g). However, van der
Maas and colleagues argued that this empirical pattern can also be accounted for bymeans of a
network approach, wherein the patterns of positive relationships can be explained using a
mutualism model, i.e. the variables have mutual, reinforcing, relationships. From a network
analysis perspective, the network of relationships between the variables constitute the psycho-
logical phenomenon (De Schryver, Vindevogel, Rasmussen, & Cramer, 2015), which is a
system wherein the constituent variables mutually influence each other without the need to
hypothesise the existence of causal latent variables (Schmittmann et al., 2013). In addition
to addressing psychometric issues (Epskamp, Maris, Waldorp, & Borsboom, In Press)
network perspectives can inform other areas of psychological science.

A key impetus for the current research on networks in psychology derives from Bors-
boom and colleagues’ influential application of networks in the field of clinical psychology
in relation to psychopathology symptoms (e.g. Borsboom, 2017; Borsboom & Cramer,
2013; Cramer et al., 2016; Cramer, Waldorp, van der Maas, & Borsboom, 2010).
Network models are also increasingly applied in other areas such as health related
quality of life (HRQOL) assessment in health psychology (e.g. Kossakowski et al.,
2016), personality (e.g. Costantini et al., 2015; Mõttus & Allerhand, 2017), and attitudes
(e.g. Dalege et al., 2015). The psychosystems research team (i.e. Denny Borsboom, Angél-
ique Cramer, Sacha Epskamp, Eiko Fried, Don Robinaugh, Claudia van Borkulo, Lourens
Waldorp, Han van der Maas) are critical innovators for network analysis in psychology
and this paper draws extensively from the key papers from the team and their collabor-
ators; the psychosystems.org webpage is an essential resource for anyone interested in
network analysis theory, process and applications.
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To date, network analysis has not been widely applied in health psychology; however,
network models are particularly salient for health psychology because many of the psycho-
logical phenomena we seek to understand are theorised to depend upon a large number of
variables and interactions between them. The biopsychosocial model (e.g. Engel, 1980) has
underpinned health psychology research and theory for the past 4 decades, and it reflects a
complex system of mutually interacting and dynamic biological, psychological, interper-
sonal, and contextual effects on health (Lehman, David, & Gruber, 2017; Suls &
Rothman, 2004). From a network perspective, health behaviours and outcomes can be
conceptualised as emergent phenomena from a system of reciprocal interactions:
network analysis offers a powerful methodological approach to investigate the complex
patterns of such relationships. The overall global structural organisation, or topology, of
the phenomenon and the roles played by specific variables in the network can be analysed
in a manner that other statistical approaches cannot provide. In general, health psychology
research, like many areas of psychology, has studied aspects of systems in isolation: for
example, using regression models to examine the relationship between focal beliefs and
moods and a specific outcome such as health behaviours or adaptation to illness. Although
such research provides important insights, this approach is not suited for examining
complex systems of interconnected variables and it does not help us easily piece back
the various separate research findings on discrete components/sub-pathways into the
more complex and complete system. As noted above, the complex interplay of physiologi-
cal, psychological, social and environmental factors have been highlighted in the context of
obesity. Comparable exercises for other chronic illnesses will produce similarly complex
networks of variables. Network analysis provides a means to understand system-level
relationships in a manner that can enhance psychological science and practice.

Health psychology research often focuses on HRQOL as a key outcome variable and
HRQOL is frequently understood as being the common effect of observed items in
scales, e.g. increased daily pain causes lower mental health. Network analysis has been
applied to the SF-36 (Ware & Sherbourne, 1992), a widely used HRQOL scale, to
examine the patterns of relationships between the items: Kossakowski et al. (2016)
found that the observed covariances between the items may result largely from direct
interactions between items. From this perspective, HRQoL emerges from a network of
mutually interacting characteristics; the specific nature of the interacting relationships
(e.g. causal effect, bidirectional effect, or effects of unmodelled latent variables) requires
additional clarification. In addition to offering novel insights into psychometrics, a
network approach can be applied to other important health psychology variables (e.g.
illness representations, coping strategies) to better understand the nature of the relation-
ships between items used in measurement.

Borsboom’s research on the networks of patterns of interconnected relationships
between symptoms of various psychiatric disorders has resulted in the development of
a novel network theory of mental disorders (Borsboom, 2017). This theory provides
new insights into how trigger events can activate pathways in strongly connected networks
to produce symptoms that can become self-sustaining, i.e. because the symptoms are
strongly connected, feedback relations between them mean that they can activate each
other after the triggering event has been removed. The absence of the trigger may be
not be sufficient to de-activate the symptom network and return the person to a state
of health; such insights from a network theory of psychopathology can help inform not
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only understandings of how and why symptoms are maintained, but also how such net-
works can be targeted to help transition the network back into a healthy state. Of note,
such an approach may be beneficial for health psychology approaches to understanding
clusters of symptom presentations over time in conditions such as chronic pain and
chronic fatigue syndrome.

The network structures of individuals can be visualised and analysed; consequently we
may be able to see how the system of beliefs, emotional states, behaviours and symptoms
influence each other over time. Systems might comprise sets of variables that are diverse
and only marginally connected, or could consist of variables that are highly intercon-
nected. Understanding an individual’s personalised network may allow insight into
when an individual’s specific patterns of beliefs and behaviours reach a tipping point,
which then negatively impact on mood and symptoms. Such system transitions (e.g.
moving from a state of wellness to being impaired functionally) occur gradually in
response to changing conditions or they may be triggered by an external perturbation,
e.g. life stressor. An individual may have a very robust network so that it remains stable
despite the perturbations (e.g. symptom flare up) and consequently the person can main-
tain function, whereas other individuals may have less resilient networks wherein it is
challenging to restore disturbed equilibrium. How such networks evolve over time and
respond to changes in key and peripheral variables cannot be understood using traditional
analytical methods: network analysis offers rich potential to further our understanding of
complex systems of relationships among variables.

The Causal Attitude Network (CAN) model, which conceptualises attitudes as net-
works of causally interacting evaluative reactions (i.e. beliefs, feelings, and behaviours
towards an attitude object; Dalege et al., 2015), is also of particular interest to health psy-
chologists given the centrality of attitudinal variables in many core psychological models
(e.g. Theory of Planned Behaviour, Health Belief Model). The capacity to graphically visu-
alise complex patterns of relationships further offers the potential for insight into the
salient psychological processes and to highlight theoretical gaps. For example, Langley,
Wijn, Epskamp, and Van Bork (2015) used network analysis to examine the Health
Belief Model variables in relation to girls’ intentions to obtain HPV vaccination. They
reported that although some aspects of the HBM (e.g. perceived efficacy) were related
to intentions, other core constructs such as cues to action were less relevant. In addition,
social factors, currently not included in the HBM, were important in the network; such
research can inform conceptual developments linking individual beliefs with social
context to better understand healthy behaviours. Consequently, the network approach
offers the potential to gain novel insights as the network structure can be analysed to
reveal both core structural and relational features.

The aim of this paper is to provide an overview of networks, how they can be visualised
and analysed, and to present a simple example of how to conduct network analysis on
empirical data in R (R Core Team, 2017).

What is a network?

At an abstract level, a network refers to various structures comprising variables, which
are represented by nodes, and the relationships (formally called edges) between
these nodes. For example, from the Foresight Report the variables such as stress, peer
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pressure, functional fitness, nutritional quality of food and drink represent nodes in the
network, and the positive and negative relationships between those nodes are edges.
There are some differences in nomenclature in the network literature: nodes are some-
times referred to as vertices, edges are sometimes referred to as links, and networks are
also called graphs. Networks can be estimated based on cross-sectional or longitudinal
time-series data; in addition, networks can be analysed at the group or individual level.
Cross sectional data from a group can reveal group-level conditional independence
relationships (e.g. Rhemtulla et al., 2016). Individualised networks based on times series
data can provide insights into a specific individual over time (e.g. Kroeze et al., 2017). Fur-
thermore, the networks produced by different populations can be compared. In general,
network analysis represents a wide range of analytical techniques to examine different
network models.

In psychological networks, nodes represent various psychological variables (e.g. atti-
tudes, cognitions, moods, symptoms, behaviours), while edges represent unknown statisti-
cal relationships (e.g. correlations, predictive relationships) that can be estimated from the
data. A node can represent a single item from a scale, a sub-scale, or a composite scale: the
choice of node depends upon the type of data that provide the most appropriate and useful
understanding of the questions to be addressed. Edges can represent different types of
relationships, e.g. co-morbidity of psychological symptoms, correlations between
attitudes.

Two types of edges can be present in a network: (1) a directed edge: the nodes are con-
nected and one head of the edge has an arrowhead indicating a one-way effect, or (2) an
undirected edge: the nodes have a connecting line indicating some mutual relationship but
with no arrowheads to indicate direction of effect. Networks can be described as being
directed (i.e. all edges are directed) or undirected (i.e. no edges are directed). For
example, edge direction has been used in psychology networks particularly for represent-
ing cross-lagged relationships among variables (Bringmann et al., 2016). A directed
network can be cyclic (i.e. we can follow the directed edges from a given node to end
up back at that node) or acyclic (i.e. you cannot start at a node and end up back at that
node again by following the directed edges).

Directed networks can represent causal structures (Pearl, 2000); however, such directed
networks can have very strict assumptions, i.e. all the variables that have a causal effect are
measured in the network, and the causal chain of cause and effect is not cyclic (i.e. a vari-
able cannot cause itself via any path) (Epskamp, Borsboom, & Fried, 2018a). Although
Directed Acyclic Graphs (DAGs) have been frequently reported in the epidemiological
research literature in the past two decades (Greenland, Pearl, & Robins, 1999), the
acyclic assumption may be untenable in many contexts for psychology. For example, in
many psychological phenomena, reciprocal effects may exist between variables: having a
positive attitude towards a behaviour results in that behaviour, which then results in a
more positive attitude. In addition, directed networks suffer from the problem, similar
to that arising in Structural Equation Modelling, that many equivalent models can
account for the pattern of relationships found in the data (Bentler & Satorra, 2010; Mac-
Callum, Wegener, Uchino, & Fabrigar, 1993). In their recent review of the challenges for
network theory and methodology in psychopathology, Fried and Cramer (2017) note that
despite the plausibility of many causal psychopathological symptom pathways in net-
works, there is a need to build stronger cases for the causal nature of these relationships.

HEALTH PSYCHOLOGY AND BEHAVIORAL MEDICINE 305



They highlight that many network papers have estimated undirected networks in cross-
sectional data, and that even those that use directed networks based on time-series data
at best show that variables measured at one moment in time can predict another variable
at a different measurement time (Granger causality; Granger, 1969), which satisfies the
requirement for putative causes preceding their effects (Epskamp et al., 2018b). Although
such a temporal relationship may indicate a causal relationship, it is possible that the link
may occur for other reasons (e.g. a unidimensional autocorrelated factor model would lead
to every variable predicting every other variable over time; Epskamp et al., 2018b). Spirtes,
Glymour, and Scheines (2000) developed the PC algorithm, which can be used to examine
networks to find candidate causal structures that may have generated the observed pat-
terns of relations present. However, such approaches have not been widely used to date
in psychological networks. In general, network analysis can be considered as hypoth-
esis-generating for putative causal structures that require empirical validation.

Edges convey information about the direction and strength of the relationship between
the nodes. The edge may be positive (e.g. positive correlation/covariance between vari-
ables) or negative (e.g. negative correlation/covariance between variables); the polarity
of the relationships is represented graphically using different coloured lines to represent
the edges: positive relationships are typically coloured blue or green, and negative relation-
ships are coloured red. Edges can be either weighted or unweighted. A weighted edge
reflects the strength of the relationship between nodes by varying the thickness and
colour density of the edge connecting the nodes: thicker denser coloured lines indicate
stronger relationships. Alternatively, the edge may be unweighted and simply represent
the presence vs. absence of a relationship; in such a network, the absence of a relationship
results in the nodes not having a connecting edge.

Figure 1 presents a simple network model representing the partial correlation matrix
between 5 variables (A - E) below (Table 1). The size and colour density of the lines
(edges) vary to reflect the varying strength of relationship between the variables; the
edges are non-directional as the data represented as bivariate partial correlations
between the variables. The network comprises both positive (green lines) and negative cor-
relations (red lines) between the variables. Some variables are more central and have more
connections than others: C relates to all the variables in the network, whereas D only
relates to two other variables.

Having briefly outlined the basic features of a network, the next sections will outline the
three core analytical steps in network analysis:

1) Estimate the network structure based on a statistical model that reflects the empirical
patterns of relationships between the variables

2) Analyse the network structure
3) Assess the accuracy of the network parameters and measures.

1. Estimating the Network
Historically, network science has developed using graphical approaches to represent
relationships between nodes. For example, Leonhard Euler’s application of ‘geometry of
position’, Gustav Kirchoff’s work on the algebra of graphs in relation to electrical net-
works, and Cayley’s contributions to molecular chemistry all utilised graphical approaches
to network data (Estrada & Knight, 2015). The network visually represents the pattern of
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relationships between variables and a network can be estimated using common statistical
parameters that quantify relationships, e.g. correlations, covariances, partial correlations,
regression coefficients, odds ratios, factor loadings. However, as correlation networks can
contain spurious edges, for example due to an (unmeasured) confounding variable, the
most common approach in psychology uses partial correlations to create the relationships
between variables. For example, if we had a network examining the relationship between
risk behaviours (e.g. caffeine consumption) and health outcome (e.g. cancer), the analysis
would show a relationship between the variables; however, such a relationship may simply
reflect the fact that an unmeasured confound (e.g. smoking) is associated with both
caffeine consumption and cancer. Partial correlations, similar to multiple regression coeffi-
cients, provide estimates of the strength of relationships between variables controlling for
the effects of the other measured variables in the network model. Thus it is critically
important to measure such potential confounding variables to ensure that their effects
are controlled for. Two nodes are connected if there is covariance between those nodes

Figure 1. Sample network with 5 nodes and 8 edges. Postive edges are green and negative edges are
red. The numbers represent the correlations between the variables.

Table 1. Partial correlation matrix between 5 variables.
Variable A B C D

B .2 – – –
C −.8 −.3 – –
D 0 .3 .2 –
E .6 .9 .4 0
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that cannot be explained by any other variable in the network. The resulting partial cor-
relations not only provide an estimate of the direct strength of relationships, but can also
indicate mediation pathways: in Figure 1 A and D are not directly connected (i.e. no edge
between them) but A influences C, which in turn influences D, thus C mediates the
relationship between A and D. Partial correlation networks can provide valuable hypoth-
esis generating structures, which may reflect potential causal effects to be further examined
in terms of conditional independence (Pearl, 2000).

As noted previously, undirected network models in psychology have typically been
examined, and a frequently used model in estimating such networks is the pairwise
Markov Random Field (PMRF), which is a broad class of statistical models. A PMRF
model is characterised by undirected edges between nodes that indicate conditional
dependence relations between nodes. An absent edge means that two nodes are con-
ditionally independent given all other nodes in the network. An edge indicates conditional
dependence given all other nodes in the network. Different PMRF models can be used,
depending upon the type of data (continuous, ordinal, binary, or mixtures of these data
types) to be modelled. When continuous data are multivariate normally distributed, ana-
lysing the partial correlations using the Gaussian graphical model (GGM; Costantini et al.,
2015; Lauritzen, 1996) is appropriate. If the continuous data are not normally distributed
then a transformation (e.g. nonparanormal transformation, Liu, Lafferty, & Wasserman,
2009) can be applied prior to applying the GGM. The GGM can also be used for
ordinal data, wherein the network is based on the polychoric correlations instead of
partial correlations (Epskamp, 2018). If all the research variables are binary, the Ising
Model can be used (van Borkulo et al., 2014). When the data comprise a mixture of cat-
egorical and continuous variables, theMixed Graphical Model can be used to estimate the
PMRF (Haslbeck & Waldorp, 2016). Thus, networks can be estimated from various types
of data in a flexible manner.

The network complexity requires consideration. The higher the number of nodes
being examined, then the higher the number of edges have to be estimated: in a
network with five nodes, 10 unique edges are estimated, whereas in a network with
10 nodes, 45 edges are estimated, and in a network with 20 nodes, 190 edges are esti-
mated. In addition, in the case of an Ising model not only are edge weights estimated
but so too are thresholds: in the case of 20 nodes that would mean an additional 20
parameters to be estimated. However, as mentioned above many of these edges
(e.g. correlations) may be spurious, and an increase in the number of nodes can
lead to over-fitting and very unstable estimates (Babyak, 2004). Like all statistical tech-
niques that use sample data to estimate parameters, the correlation and partial corre-
lations values will be influenced by sample variation and therefore exact zeros will be
rarely observed in the matrices. Consequently, correlation networks will nearly always
be fully connected networks, possibly with small weights on many of the edges that
reflect weak and potentially spurious partial correlations. Such spurious relationships
will be problematic in terms of the network interpretation and will compromise the
potential for network replication. In order to limit the number of such spurious
relationships, a statistical regularisation technique, which takes into account the
model complexity, is frequently used.

A ‘least absolute shrinkage and selection operator’ (LASSO; Friedman, Hastie, & Tib-
shirani, 2008) with a tuning parameter set by the researcher is applied to the estimation of
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the partial correlation networks. The LASSO performs well in the estimation of partial cor-
relation networks (Fan, Feng, & Wu, 2009), and it results in some small weak edge esti-
mates being reduced to exactly zero, resulting in a sparse network (Tibshirani, 1996).
The LASSO yields a more parsimonious graph (fewer connections between nodes) that
reflects only the most important empirical relationships in the data. Of note, the
absence of an edge does not present evidence that the edge is in fact exactly zero
(Epskamp, Kruis, Marsman, & Marinazzo, 2017). The goal of the LASSO is to exclude
spurious relationship but in doing so, it may omit actual relationships. Although many
variants of the LASO have been developed, the graphicalLASSO (glasso, Friedman et al.,
2008) is recommended both in terms of ease of implementation in specific analysis pro-
grammes but also its felxibility in terms of non-continuous data (Epskamp & Fried, In
Press). The edge may be absent from the network if the data are too messy and noisy
to detect the true relationship, and quantifying evidence for edge weights being zero is
an ongoing research issue (Wetzels & Wagenmakers, 2012). Simulation studies show
that the LASSO has a low likelihood of false positives, which provides some confidence
that an observed edge is indeed present in the network (Krämer, Schäfer, & Boulesteix,
2009). However, the specific nature of the relationship reflected in the edge is still uncer-
tain, e.g. the edge could represent a direct causal pathway between nodes, or it could reflect
the common effect of a (latent) variable not included in the network model.

As mentioned previously, the use of the LASSO requires setting a tuning parameter.
The sparseness of the network produced using the LASSO depends upon the value the
researcher sets tuning parameter (λ): the higher the λ value selected the more edges are
removed from the network and its value directly influences the structure of the resulting
network. The tuning parameter λ therefore needs to be carefully selected to create a
network structure that minimises the number of spurious edges while maximising the
number of true edges (Foygel & Drton, 2010). In order to ensure that the optimal
tuning parameter is selected, a commonmethod involves estimating a number of networks
under different λ values. These different networks range from a completely full network
where every node is connected to each other to an empty network where no nodes are con-
nected. The LASSO estimates produce a collection of networks rather than a single
network; the researcher needs to select the optimal network model and typically this is
achieved by minimising the Extended Bayesian Information Criterion (EBIC; Chen &
Chen, 2008), which has been shown to work particularly well in identifying the true
network structure (Foygel & Drton, 2010; van Borkulo et al., 2014), especially when the
true network is sparse. Model selection using the EBIC works well for both the Ising
model (Foygel Barber & Drton, 2015) and the GGM (Foygel & Drton, 2010). The EBIC
has been widely used in psychology networks (e.g. Beard et al., 2016; Isvoranu et al.,
2017) and it enhances both the accuracy and interpretability of networks produced
(Tibshirani, 1996).

The EBIC uses a hyperparameter (γ) that dictates how much the EBIC will prefer
sparser models (Chen & Chen, 2008; Foygel & Drton, 2010). The γ value is determined
by the researcher and is typically set between 0 and 0.5 (Foygel & Drton, 2010), with
higher values indicating that simpler models (more parsimonious models with fewer
edges) are preferred. In many ways the choice of γ depends upon the extent to which
the researcher is taking a liberal or conservative approach to the network model. A
value of 0 results in more edges being estimated, including possible spurious ones, but
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which can be useful in early exploratory and hypotheses generating research. Of note, a γ
setting of zero will still produce a network that is sparser compared to a partial correlation
network that has not be regularised using a LASSO. Although γ can be set at 1, the default
in many situations is 0.5. Foygel and Drton (2010) suggest that setting the γ value 0.5 will
result in fewer edges being retained, which will remove the spurious edges but it may also
remove some other edges too. A compromise value γ of 0.25 is potentially a useful value to
also use to see the impact on the network model produced.

Figure 2 presents the same data (questionnaire items on the big 5 model of person-
ality, with 5 items for each dimension: Openness, Conscientiousness, Agreeableness,
Extraversion, and Neuroticism) analysed using γ of 0, 0.5, and 0.99. With the
tuning parameter set to 0, the network contains a dense array of connections as
more edges are estimated; as the tuning parameter increases, the number of edges esti-
mated decreases as the model become more sparse. This illustrates that the choices
made by the researchers in setting the γ level will impact on the nature of the
network produced. Of note, Epskamp and Fried (In Press) report that comparison
of networks based on simulated data using γ of 0.00, 0.25 and 0.50 revealed the
higher values of γ were able to reveal the true network structure but that the value
of 0 included a number of spurious relationships. They caution that γ of .5 may
still be conservative and not reflect the true model, and they note that the choice
of γ is somewhat arbitrary and up to the researcher. Epskamp (2018) reported recently
that increasing the γ to 0.75 or 1.00 did not outperform a γ of 0.5 in a well-established
personality dataset.

In order to plot the network, the nodes and edges need to be positioned in manner that
reflects the patterns of relationships present in the data. The most frequently used
approach in psychological networks is the Fruchterman-Reingold algorithm (Fruchter-
man & Reingold, 1991), which calculates the optimal layout so that nodes with less
strength and less connections are placed further apart, and those with more and/or stron-
ger connections are placed closer to each other. The development of qgraph as a package
to visualise patterns of relationships between nodes in networks was an invaluable contri-
bution to advancing network analysis (Epskamp, Cramer, Waldorp, Schmittmann, &
Borsboom, 2012).

Figure 2. Partial correlation networks estimated on same dataset, with increasing levels of the LASSO
hyperparameter γ (from left to right: Panel (a) γ = 0, Panel (b) γ = 0.5, Panel (c) = 0.99).
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2. Network Properties
After a network structure is estimated, the graphical representation of the network reveals
the structural relationships between the nodes, and we can then further analyse the
network structure in terms of its properties. This analysis provides insight into critically
important features of the network. For example, are certain nodes more important
(central) than others in the network? Is the global structure dense or sparse? Does it
contain strong clusters of nodes (communities) or are the nodes isolated?

Centrality

Not all nodes in a network are equally important in determining the network’s structure:
centrality indices provide insight into the relative importance of a node in the context of
the other nodes in the network (Borgatti, 2005; Freeman, 1978). For example, a central
symptom is one that has a large number of connections in a network and its activity can
spread activation throughout a symptoms network; in contrast, a peripheral symptom is
on the outskirts of a network and has few connections and consequently less impact on
the network. Different centrality indices provide insights into different dimensions of cen-
trality. The indices can be presented as standardised z score indices to provide information
on the relative importance of the nodes, and judging centrality requires careful consideration
of the different dimensions in combination. These indices are based on the pattern of the
connections in which the node of interest plays a role and can be used to model or
predict several network processes, such as the amount of flow that traverses a node or the
tolerance of the network to the removal of selected nodes (Borgatti, 2005). The most
common aspects of centrality typically examined are as follows.

Degree: degree centrality is defined as the number of connections incident to the node
of interest (Freeman, 1978).

Node strength: how strongly a node is directly connected to other nodes is based on the
sum of the weighted number and strength of all connections of a specific node relative to
all other nodes. Whilst degree provides information on the number of connections,
strength can provide additional information on the importance of that node, for
example a node with many weak connections (high degree) might not be as central to
the network as one that has fewer but stronger connections. However, as noted by
Opsahl, Agneessens, and Skvoretz (2010) merely focusing on node strength alone as an
index of importance is potentially misleading as it does not take account of the number
of other nodes to which it connected. Consequently, it is important to incorporate both
degree and strength as indicators of the level of involvement of a node in the surrounding
network when examining the centrality of a node. Opsahl et al. (2010) proposed the use of
a degree centrality measure, which is the product of the number of nodes that a specific
node is connected to, and the average weight of the edges to these nodes adjusted by an
alpha (α) parameter, which determines the relative importance of the number of edges
compared to edge weights. In combining both degree and strength, the tuning α parameter
is set by the researcher: if this parameter is between 0 and 1, then having a high degree is
regarded as favourable, whereas if it is set above 1, then a low degree is favourable.

Closeness: the closeness index quantifies the node’s relationship to all other nodes in the
network by taking into account the indirect connections from that node. A high closeness
index indicates a short average distance of a specific node to all other nodes; a central node
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with high closeness will be affected quickly by changes in any part of the network and can
affect changes in other parts of the network quickly (Borgatti, 2005).

Betweenness: the betweenness index provides information on how important a node is
in the average pathway between other pairs of nodes. A node can play a key role in the
network if it frequently lies on the shortest path between two other nodes, and it is impor-
tant in the connection that the other nodes have between them (Saramäki, Kivelä, Onnela,
Kaski, & Kertész, 2007; Watts & Strogatz, 1998).

Clustering: the extent to which a node is part of a cluster of nodes can be estimated (Sar-
amäki et al., 2007). The local clustering coefficient C is the proportion of edges that exist
between the neighbours of a particular node relative to the total number of possible edges
between neighbours (Bullmore & Sporns, 2009). It provides insight into the local redun-
dancy of a node: does removing the node have an impact on the capacity of the neighbour-
ing nodes to still influence each other? An overall global clustering coefficient (also
referred to as transitivity) for the entire network can be estimated in both undirected
and directed networks. Furthermore, the overall network may comprise communities,
i.e. a clustering of nodes that are highly interconnected among themselves and poorly con-
nected with nodes outside that cluster.

Detecting communities requires researchers to not simply interpret the placement of
nodes in the visual representation of the data but to examine the patterns present using
a formal statistical approach. Fried (2016) highlights a number of approaches to help
identify communities. As latent variable models and network models are mathematically
equivalent, examining the eigenvalues of components present in data using exploratory
factor analysis is one way to identify how many communities might be present and the
factor loadings indicate which nodes belong to which community. More sophisticated
approaches include the spinglass algorithim (although this is limited by the fact that it
often produces different results every time you run it, and it only allows nodes to be
part of one community, whereas nodes may be better described as belonging to several
communities at the same time), the walktrap algorithim (which provides more consistent
results if you repeat it, but which also only allows nodes to be part of one community), and
the Clique Percolation Method (CPM), which allows nodes to belong to more than one
community (see Blanken et al., 2018).

Overall network topology

Networks can take on many different shapes; however, some common network shapes
have been described in detail in the literature. Random networks comprise nodes with
random connections, with each node have approximately the same number of connections
to others. The distribution of the nodes’ connections follows a bell-curve. ‘Small world’
networks are characterised by relatively high levels of transitivity and nodes being con-
nected to each other through small average path lengths (Watts & Strogatz, 1998). A
classic example of the ‘small-world effect’ is the so-called ‘six degrees of separation’ prin-
ciple, suggested by Milgram (1967). Letters passed from person to person reached a desig-
nated target individual in only a small (approximately 6) number of steps; the nodes
(individuals) were connected by a short path through the network.

‘Scale free’ networks are characterised by a relatively small number of nodes that are
connected to many other nodes (Barabási, 2012). These ‘hub’ nodes have an exceptionally
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high number of connections to other nodes, whereas the majority of non-hub nodes have
very few connections. The distribution of the nodes’ connections follows a power law.
Research has found that HIV transmission among men who have sex with men can be
modelled as a scale free model (Leigh Brown et al., 2011); identifying individuals who
are have very high levels of connections and represent ‘superspreaders’ of infections pro-
vides an efficient means for targeted vaccinations (Pastor-Satorras & Vespignani, 2001).
Within scale free networks, nodes with high centrality measures and extremely higher cen-
trality than other nodes may be ‘hubs’. However, it is critically important to check the
pattern of directed relationships between the node and its neighbours, e.g. in a directed
network a node could have a high centrality because it has many directed edges to
other nodes (high OutDegree centrality) whilst having no edges from those nodes pointing
at it (zero InDegree centrality); in this case the node would not be a hub.1

In addition to group-level analysis, networks can be developed at a person-specific level:
a time-series network of an individual may be useful for understanding the relationship
between nodes (e.g. symptoms) at an individualised level, and could be used for person-
alised treatment planning (David, Marshall, Evanovich, & Mumma, 2018). If network
structures are replicated and nodes emerge as hubs, then changing these hub nodes
might have downstream effects on other nodes, which might result in an efficient
means to change outcomes (Isvoranu et al., 2017). For example, network analysis may
reveal that a certain belief is a hub and therefore critical in terms of impact on behaviour
change: therefore we could focus our efforts on changing that belief rather than attempting
to change multiple beliefs. Developing a better understanding of the structural relation-
ships between the nodes in the network can provide important theoretical and practical
insights for health psychology.

3. Network accuracy
As the network is based on sample data, the accuracy of the sample-based estimates of

the population parameters reflecting the direction, strength and patterns of relationships
between nodes should be considered. To-date much of the research on networks has used
edge strength and node centrality to make inferences about the phenomenon being mod-
elled. However, as Epskamp et al. (2018a) note, relatively little attention has been paid
towards examining the accuracy of the edge and centrality estimates. Given the relatively
small sample sizes that typically characterises psychological research, edge strengths and
node centrality may not be estimated accurately. Therefore, it is recommended that
researchers determine the accuracy of both. The accuracy of edge weights is estimated
by calculating confidence intervals (e.g. 95% CI) for their estimates. As a CI requires
knowledge of the sampling distribution of the estimate, which may be difficult to obtain
for the edge weight estimate, Epskamp et al. (2018a) developed a method that uses boot-
strapping (Efron, 1979) to repeatedly estimate a model under either sampled or simulated
data, and then estimates the required statistic. The more bootstrap samples that are run,
the more consistent the results. Either a parametric bootstrap or non-parametric bootstrap
can be applied for edge-weights (Bollen & Stine, 1992). For non-parametric bootstrapping,
observations in the data are resampled with replacement to create new plausible datasets.
Parametric bootstrapping samples new observations from the parametric model that has
been estimated from the original data; this creates a series of values that can be used to
estimate the sampling distribution. Consequently, the parametric bootstrap requires a
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parametric model of the data whereas the non-parametric bootstrap can be applied to con-
tinuous, categorical and ordinal data. As the non-parametric bootstrap is data-driven and
less likely to produce biased estimates with LASSO regularised edges (which tend to dom-
inate in the literature), Epskamp et al. (2018a) emphasise the usefulness and general appli-
cability of the non-parametric bootstrap. If the bootstrapped CIs are wide, it becomes hard
to interpret the strength of an edge.

The accuracy of the centrality indices can be examined by using a different type of boot-
strapping: subsets of the data are used to investigate the stability of the order of centrality
indices based on the varying sub-samples (m out of n bootstrap; Chernick, 2011). The
focus is on whether the order of centrality indices remains the same after re-estimating
the network with less cases or nodes. A case-dropping subset bootstrap can applied and
the correlation stability (CS) coefficient can quantify the stability of centrality indices
using subset bootstraps. The correlation between the original centrality indices (based
on the full data) is compared to the correlation obtained from the subset of data represent-
ing different percentages of the overall sample. For example, what is the correlation
between the estimates from the entire data with the estimates based on a subset of 70%
of the original sample? A series of such correlations can be presented to illustrate how
the correlations change as the subset sample gets smaller (95% of the sample, 80%,
70%,… .25%). If the correlation changes considerably, then the centrality estimate may
be problematic. A correlation stability coefficient of .7 or higher between the original
full sample estimate and the subset estimates has been suggested as being a useful
threshold to examine (Epskamp et al., 2018a). A CS-coefficient (correlation = .7) rep-
resents the maximum proportion of cases that can be dropped, such that with 95% prob-
ability the correlation between original centrality indices and centrality of networks based
on subsets is 0.7 or higher (Epskamp et al., 2018a). It is suggested that the CS-coefficient
should not be below 0.25, and preferably it should be above 0.5.

Other applications of network analysis

The majority of research has examined networks based on cross-sectional data from a
single group of participants. However, networks can also be determined for individuals
over time as well as for comparing different groups. A network can be created for an indi-
vidual based on time-series data to provide insights into that specific individual. Nodes
that are identified as hubs in such networks could be important targets for interventions
(Valente, 2012). Networks can be developed that model temporal effects between consecu-
tive data measurements. The graphical VAR model (Wild et al., 2010) uses LASSO regu-
larisation based on BIC to select the optimal tuning parameter (Abegaz & Wit, 2013).
When multiple individuals are measured over time, multi-level VAR can be used and it
estimates variation due to both time and to individual differences (Bringmann et al., 2013).

Networks can be estimated for different groups. Although the lack of methods compar-
ing networks from different groups has been noted (Fried & Cramer, 2017), joint esti-
mation of different graphical models (Danaher, Wang, & Witten, 2014; Guo, Levina,
Michailidis, & Zhu, 2011) may prove useful in this context. For example the Fused Graphi-
cal Lasso (FGL) was recently used to compare the networks of borderline personality dis-
order patients with those from a community sample (Richetin, Preti, Costantini, De
Panfilis, & Mazza, 2017). In addition, van Borkulo and colleagues have developed the
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Network Comparison Test (NCT) to allow researchers to conduct direct comparisons of
two networks as estimated in different subpopulations (Van Borkulo, 2018). The test uses
permutation testing in order to compare network structures that involve relationships
between variables that are estimated from the data. The test focuses on the extent to
which groups may differ in relation to (1) the structure of the network as a whole, (2) a
given edge strength, (3) and the overall level of connectivity in the network. For
example, research has reported that the network of MDD symptoms for those with per-
sistent depression was more strongly connected than the network of those with remitting
depression (van Borkulo et al., 2015).

Network analysis issues

Like all statistical models, the network model represents an idealised version of a real-
world phenomenon that we wish to understand. In selecting the variables to be modelled
we must decide which variables to include and how they are to be measured: each of these
processes introduces error into the modelling process. A general concern for networks
concerns their replicability (e.g. see Forbes, Wright, Markon, & Krueger, 2017; and
responses by Borsboom et al., 2017; Steinley, Hoffman, Brusco, & Sher, 2017) and research
needs to address this issue by estimating the stability of the networks and examining gen-
eralizability of the network model. As noted by Fried and Cramer (2017) the literature in
general requires more conceptual and methodological developments for estimating both
the accuracy and stability of networks. The identification of useful thresholds for these
parameters will also prove critical in the interpretation of the network models. Similar
to other methods of analysis (e.g. regression, SEM), network analysis is sensitive to the
variables in the model and to the specific estimation methods used. Hence, the challenges
regarding replication and generalizability are not unique to network modelling.

The larger the sample size, the more stable and accurately networks are estimated.
Given the recent growth in use network analytic approaches in psychology it is not easy
to hypothesise expected network structure and edge weights, which means there is little
evidence to guide a priori power analyses. Epskamp et al. (2018a) note that as more
network research is conducted in psychology, more knowledge will accumulate regarding
the nature of network structure and edge-weights that can be expected.

The dominant methods to date used to discover network structures in psychology are
based on correlations, partial correlations, and patterns of conditional independencies.
Further developments and application of causal model techniques will advance under-
standing of the relationships present in networks (Borsboom & Cramer, 2013). As
noted previously, much of the research in psychological networks has been based on
exploratory data analyses to generate networks; there is a need to progress towards confi-
rmatory network modelling wherein hypotheses about network structure are formally
tested.

How to run network analysis: an example using R

Many network structure analysis methods can be implemented in the generic software
MATLAB and Stata, or specialised network software packages including UCINET (Bor-
gatti, Everett, & Freeman, 2002) or Gephi (https://gephi.org). The Stanford Network
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Analysis Platform (SNAP) provides a network analysis library. R is an open-source stat-
istical programming language that facilitates statistical analysis and data visualisation (R
Core Team, 2017); to date much of the research on psychological networks has used R-
packages igraph (Csárdi & Nepusz, 2006) or qgraph (Epskamp et al., 2012). Of note,
the psychosystems research group has created specific R packages that make network
analysis easier to implement (see psychosystems.org). As mentioned at the start of this
paper, their website is an essential resource for conducting network analysis in psychology.
In this example, we will use the bootnet package as it provides a comprehensive suite of
analytical options for network analysis. Data can inputted straight into R or can be
imported in various common formats (e.g. csv. or txt. file) or from other data analysis pro-
grammes, e.g. Excel, SPSS, SAS and Stata.

R can be obtained via the https://www.r-project.org/ webpage. To download R, you
need to select your preferred CRAN (Comprehensive R Archive Network) mirror
(https://cran.r-project.org/mirrors.html). On the Mirrors webpage, you will find listings
of countries that have identical versions of R and should select a location geographically
close to your computer’s location. R can be downloaded for Linux, Windows, and Mac OS.
The pages are regularly updated and you need to check with releases are supported for
your platform. R as a base package can perform many statistical analyses but most impor-
tantly, R’s functionality can be expanded by downloading specific packages.

After installing R (https://www.r-project.org/), it is quite useful to also install R Studio
(https://www.rstudio.com/), which provides a convenient interface to R. Once both are
installed, opening up R Studio will give a window that is split into 4 panes:

Console/Terminal: this pane is the main graphical interface for the user and this is where the
commands are typed in.

Editor: this pane shows the active datasets that you are working on.

Environment/History/Connections: this pane shows the R datasets and allows you to import
data from text (e.g. csv. file), Excel, SPSS, SAS and Stata. The History tab allows you see the
list of your previous commands.

Files/plots/packages/help: this pane and its tabs can open files, view the most current plot (also
previous plots), install and load packages, or use the general R help function.

Under the Tools drop down tap at the top of the R Studio screen, you can select which
packages to install for the analyses required. Alternatively the packages can be installed
using the Packages tab or they can be directly installed using a typed command. R is a
command line driven programme and you can enter commands at the prompt (> by
default) and each command is executed one at a time. For the current example, you
will need to install 2 packages (‘ggplot2’ and ‘bootnet’) and the relevant command lines
are:

>Install.packages("ggplot2")
>Install.packages("bootnet")

Once installed, the packages need to be loaded into R using the library("name of package")
command.

>library("ggplot2")
>library("bootnet")

Next we need to tell R to import the data, in this case a csv. file called TPB2018.
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The data are taken from a study conducted using the Theory of Planned Behaviour
(TPB; Ajzen, 1985, 2011). The TPB assumes that volitional human behaviour is a function
of (1) one’s intention to perform a given behaviour and (2) one’s perception of behavioural
control (PBC) regarding that behaviour (Figure 3). Furhermore, intentions are influened
by one’s attitudes towards the behaviour (e.g. cognitive attitudes: is the behaviour good or
bad?; affective attitudes: is the behaviour pleasant or unpleasant?), one’s subjective norm
beliefs (e.g. descriptive norms: do others perform the behaviour?; injunctive norms: do
others who are important to me want me to perform the behaviour?), and one’s percep-
tions of control regarding the behaviour (e.g. self efficacy: level of confidence to perform
the behaviour; perceived control: barriers to stop the behavoiur being performed). The
extent to which PBC influences behaviour directly, rather than indirectly through inten-
tion, depends on the degree of actual control over performing the behaviour (Sniehotta,
Presseau, & Araújo-Soares, 2014). The TPB has been a dominant theoretical approach
in health behaviour research for a number of decades and has been examined extensively.
The vast majority of studies have used correlational designs to investigate cross-sectional
and prospective associations between TPB variables and behaviour (Noar & Zimmerman,
2005); systematic reviews indicate that the TPB accounts for approximately 20% of var-
iannce in health behaviour, and that intention is the strongest predictor of behaviour
(McEachan, Conner, Taylor, & Lawton, 2011).

Following receipt of ethical approval from the local university REC (2014/6/15), stu-
dents completed a questionnaire regarding regular exercise (Datafile in supplementary
material). This cross-sectional dataset is used here to illustrate how to conduct a
network analysis and comprises the responses of 200 students to a TPB questionnaire,
which included the following items relating to regular exercise (i.e. exercising for at
least 20 min, three times per week) for the next two months:

Att1: belief that engaging in regular exercise is healthy

Att2: belief that engaging in regular exercise is useful

Att3: belief that engaging in regular exercise is enjoyable

Dnorm1: descriptive norms for friends regarding engaging in regular exercise

Figure 3. Theory of planned behaviour.
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Dnorm2: descriptive norms for other students regarding engaging in regular exercise

Injnorm1: injunctive norms for friends regarding engaging in regular exercise

Injnorm2: injunctive norms for students regarding engaging in regular exercise

Pbc1: perceived control regarding engaging in regular exercise

Pbc2: self-efficacy towards engaging in regular exercise

Intention: intention to engage in regular exercise

In the Environment/History/Connection pane, we can select Import Dataset to import the
datafile. Alternatively you can use the command code:

TPB2018 = read.csv("filename.extension", header = TRUE).
The filename extension is simply the location of the relevant csv. file on your computer.

Once it is imported, the data will appear in the Editor pane and the console window will
have a line of code indicating that data is active

>View(TPB2018)
The next step is to tell R to estimate the network model using the EBICglasso to produce
an interpretable network. The command line below tells R to label the results as ‘Network.’

Network <- estimateNetwork(TPB2018, default = "EBICglasso")
Once we have estimated the network, we can ask R to plot it.

>plot(Network, layout = "spring", labels = colnames(TPB2018))
These commands will produce the network plot with the variable names in the plot
(Figure 4).

The network shows the strength of relationships between the TPB variables. Some
variables have quite strong connections (e.g. att2 and att3; injnorm1 and dnorm1),

Figure 4. Network analysis of TPB items. The size and density of the edges between the nodes respre-
sent the strength of connectedness.
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whereas others have weak relationship (e.g. att1 and pbc1). Visual inspection of the
network reveals that the network seems to split into three different communities: (1)
the normative beliefs cluster together; (2) the three attitudinal variables and the pbc1
item seem to cluster, and (3) the pbc2 and intention item cluster together. However,
visual inspection of the graphical display of complex relationships requires careful
interpretation, especially if there are a large number of nodes in the network. In
order to check the presence of the potential 3 communities, a spinglass algorithm
was applied to the network using the igraph R-package. Of note, this analysis
supported the 3 community interpretation (Interested readers are referred to Eiko
Fried’s tutorial on this topic: http://psych-networks.com/r-tutorial-identify-communities-
items-networks/).

Centrality

Next we can examine the centrality indices in terms of Betweenness, Closeness and
Strength (Figure 5).

>centralityPlot(Network)
Att 3 had the highest strength value and a high closeness value: it has strong connections
to the nodes nearby. It plays an important role in the network and its activation has
the strongest influence the other nodes in the network. However, pbc1 and injnorm1
had the highest betweenness values: they act as the bridge connecting the communities
of nodes.

Figure 5. Centrality indices.
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Stability of the centrality indices

As noted previously, the stability of centrality indices can be examined by estimating
network models based on subsets of the data. The case-dropping bootstrap (type
= "case") is used; in this case 1000 bootstrapped samples were estimated.

>CentralStability <- bootnet(Network, nBoots = 1000, type
= "case")
The CS coefficients for each index can be produced:

>corStability(CentralStability)
A table presenting summary data (e.g. M, SD, CIs) on the bootstrapped indices can be

created.
>summary(CentralStability)

However, it may be more useful to plot the stability of centrality indices:
>Plot(CentralStability)

Figure 6 shows the resulting plot of the centrality indices. As the percentage of the sample
included in the estimates decreases (as illustrated on the X-axis, the subset samples
decrease from 95% of the original sample to 25% of the sample), there is a drop in the cor-
relation between the subsample estimate and the estimate from the original entire sample.
Once the correlation goes below .7, then the estimates become unstable. For example,
using 90% of the original sample, there is steep decrease in accuracy of the betweenness
estimate, whilst the stability of the strength and closeness estimates declines at a slower
rate. However, with a subset sample of 70% of the original participants, the closeness esti-
mate is now correlating less than .7 with the full sample estimate. When the subset sample
comprises 50% of the original sample, the strength estimate falls below .7. Overall, the

Figure 6. Stability of central indices.
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pattern suggests the stability of the centrality indices for closeness and betweenness are not
that reliable: of note, strength tends to be the most precisely estimated centrality index in
psychology networks, and betweenness and closeness only reach the threshold for reliable
estimation in large samples (Santos, Kossakowski, Schwartz, Beeber, & Fried, 2018).

Edge weight accuracy

The robustness of the edge weights can be examined using bootstrapped confidence
intervals.

> EdgeWgt<- bootnet(Network, nBoots = 2500)
Similar to the centrality indices, a summary table of the results of edge accuracy analysis
can be produced (e.g. M, SD, CIs for estimates):

summary(EdgeWgt)
The plot of the bootstrapped CIs for estimated edge parameters provides a visually infor-
mative representation of the estimates.

> plot(EdgeWgt, labels = TRUE, order = "sample")
Figure 7 has been modified to remove most of the names of the edges being rep-
resented on the Y axis to de-clutter the figure to enhance readability. The red line in
Figure 6 shows the edge value estimated in the sample, and the grey bars surrounding
the red line indicate the width of the bootstrapped CIs. Of note, many of edges are

Figure 7. Accuracy of the edge-weight estimates (red line) and the 95% confidence intervals (grey
bars) for the estimates.
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estimated as zero (e.g. dnorm2-att3). Some edges are larger then zero, but the bootstrapped
CIs contain zero (e.g. att3-intention), and for a smaller number of edges, the estimates are
larger than 0 and the CIs do not including zero (e.g. dnorm1 - injnorm1). Given the above
pattern of CIs for the edge weights, the network should be interpreted with caution.

The data were used to illustrate how to run network analysis. Typically such data are
analysed by combing the items into their higher order construct (e.g. Attitudes, Norms,
PBC, and Intentions) and then multiple regression examines the extent to which variation
in Attitudes, Norms and PBC accounts for variation in Intentions, and which variables
have significant relationships with intentions (Noar & Zimmerman, 2005). Network
analysis allows us to examine how the items relate to each other and can reveal important
structural relationships that regression cannot reveal. If the present network was replicated
and using larger samples, then we could interpret the network in terms of its structural
implications for the TPB.

Contrary to the theory, not all variables were directly related to intentions; for example
att2’s (belief that exercise is useful) relationship to intention was mediated by its relation-
ship to att1, att3 and pbc1. Indeed, all of the subjective norm items were related to inten-
tions through a mediated pathway with pbc1. Although in line with the TPB, the
normative beliefs are related to each other and form a community (i.e. the normative vari-
ables correlate with each other), in the current network, contrary to the theory, these nor-
mative beliefs have no direct relationship with intentions and only a weak relationship to
PBC. This finding would indicate that your intentions to exercise are not that influenced
by either the exercise behaviours of others or what you believe others would like you do in
terms of regular exercise. Rather, the network suggests that your beliefs about other’s exer-
cise only influences your perceptions of control over exercise, e.g. if others are exercising
and want you to exercise, you may feel that you have more control over whether you exer-
cise (‘if others can do it, then so can I’), and by feeling in control, you may have higher
intentions to then exercise. A previous meta-analysis similarly reported lower correlations
between subjective norms and intentions for physical activity behaviour compared to the
strength of relationships between attitudes and intentions, and between PBC and intention
(Hagger, Chatzisarantis, & Biddle, 2002).

Among the attitudinal variables, the affective attitude is the central node as it connects
not only to all the other attitude variables but also to both PBC items (in line with theory)
and the Intention item. Research has highlighted the role of affective attitudes on behav-
iour (e.g. Lawton, Conner, & McEachan, 2009) and the present data highlight the value in
conceptualising normative beliefs as comprising affective/experiential and cognitive/
instrumental components (Conner, 2015).

The model also found that the self-efficacy variable (pbc1) of PBC had the highest clo-
seness to intentions; the strong relationship between self-efficacy and activity intentions is
consistent with previous meta-analyses (Hagger et al., 2002). The fact that the two PBC
items had differing patterns of relationships with the other TPB variables further supports
the proposed distinction between the self-efficacy and perceived control components of
PBC (Conner, 2015). If replicated using within person networks, the findings may
suggest that changes self efficacy might directly impact on intentions and changes in
affective attitude might impact on the other attitudinal variables, and given the network
model, a change in Att1 provides a route to influence Pbc2, which should further
strengthen the intentions. In essence the network reveals that for regular exercise

322 D. HEVEY



behaviour among the student population, the affective attitudinal variable is the strongest
node and therefore interventions could prioritise targeting changing the emotional
responses to exercise to increase intentions to exercise. The network gives little support
to intervening to change normative beliefs. This section indicates how network analysis
in principle can influence not just how we appraise the pathways proposed in our theories,
but also how it may offer guidance for interventions.

The present example aimed to highlight some of the key aspects to conducting network
analysis in R and how to make sense of the outputs. Many real world networks estimated
in psychology are likely to be messy and therefore interpretations require tempering in
light of the stability and accuracy of the estimates. As network analysis becomes more
prevalent, replication of network structures and properties will give greater confidence
in the interpretations of the network patterns.

Of note, the psychosystems group has also developed an online web app (https://
jolandakos.shinyapps.io/NetworkApp/) that allows researchers to visualise and analyze
networks from data uploaded into the app. The app, based on the R packages describe
above, can analyse data in different common formats (e.g. ‘.csv’, ‘.xls’ and ‘.sav’) and the
data can represent the raw data, the correlation matrix between the variables, an adjacency
matrix, or an edge list. The user can inform the app how missing data were coded and can
also apply the non-paranormal transformation for data that are not normally distributed.
The app provides the various options outlined in this paper for estimating the network
structure from the raw data; these include the GLASSO, the graphical VAR, and multilevel
VAR. The network default is to use the Fruchterman-Reingold Algorithm to layout the
network and the user can decide various visual settings (e.g. size of nodes). It also calcu-
lates the centrality (strength, closeness and betweenness) indices to determine a node’s
importance in the network. A clustering analysis can be run on the data and the networks
from two groups can be compared. This resource offers a very user-friendly means to start
to examine network structures in data.

Conclusion

Barabási (2012) argued that theories cannot ignore the network effects caused by intercon-
nectedness among variables. Health psychological processes reflect complex systems and
to understand such systems, we need to understand the networks that define the inter-
actions between the constituent variables. Many of our core health psychology models
comprise networks of interacting constructs. Considering such psychological processes
and outcomes from this perspective offers alternate ways of conceptualising and answering
important psychological questions. Networks evolve over time due to dynamical processes
that add or remove nodes (variables) or change edges (relationships between variables):
the power of network science derives from the ability of the network to model systems
where the nature of the nodes (e.g. symptoms, behaviours, beliefs, physiological
arousal) and the edges (e.g. correlational relationship, causal relationship, social connec-
tion) can vary. Network analysis as a technique has been briefly outlined and how to
conduct a simple analysis in R was presented. Hopefully this brief paper will encourage
health psychologists to think about their data in terms of networks and to start to apply
network analysis methods to their research questions. The work of Borsboom and col-
leagues provides a key foundation for network analyses and, as mentioned at the start
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of this paper, their invaluable contributions to the applications of network theory to psy-
chology cannot be underestimated. Understanding the dynamic patterns of networks may
offer unique insights into core psychological processes that impact health and well-being.

Note
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