
Implementing Data Structures

1DV501/1DT901: Introduction to programming

Jonas Lundberg, office B3024

Jonas.Lundberg@lnu.se

The slides are available in Moodle

October 6, 2020

Computer Science

Implementing Data Structures 1(40)

Today ...

I Implementing linked lists

I Algorithms and Time Complexity

I Hashing

I Binary search trees

I Mini-project information

Reading instructions: Only these slides!

Computer Science

Implementing Data Structures 2(40)

Linked Lists

List can be implemented using a technique called Linked Lists

I Usually made up of two entities (list + node)

I The list holds a reference to the first node (the list field head)

I Each element is stored in a node (the node field value)

I Each node knows its predecessor node (the node field next)

I A user interacts with the list, nodes are encapsulated within the list class

value:
next:
Node

value:
next:
Node

value:
next:
Node

value:
next:
Node

List
head:
size: 4

null
5 2 8 6

Implementing Linked Lists Computer Science

Implementing Data Structures 3(40)

My linked list implementation
The following slides will show fragments of code from my linked list implementation
linked_list.py. The implementation (.py-files) is also available in Moodle.

Notice
I An implementation using only Python features presented in the course

I Each node is a list of length 2: [value,next]

I The head node is our list reference ⇒
I ⇒ all list operations are applied on the head node

I User scenario:

import linked_list as ll

Program starts

head = ll.get_new_head() # Gives access to head node

Add and print

for i in range(1,21):

ll.add(head,i) # Add elements to list

print(ll.to_string(head)) # Print list content

Notice that we use the head node as argument in all calls.

Implementing Linked Lists Computer Science

Implementing Data Structures 4(40)

A Linked Implementation
Start of file linked_list.py

A linked list using lists of size 2 as nodes. The head node

looks like [None,next], the last node (tail) looks like

[value,None], all other nodes look like [value,next]

Returns head node to be used in subsequent calls

def get_new_head():

return [None,None]

Append value n to the end of the list

def append(head, n):

node = head

while node[1] != None: # Find tail node

node = node[1] # Move to next node

node[1] = [n,None] # Attach new node to tail node

while node[1] != None: node = node[1] ⇒ move along the node chain

until we find tail node identified as having None as next node (node[1]).

Implementing Linked Lists Computer Science

Implementing Data Structures 5(40)

The function to string(head)

Returns a string representation of the list content

def to_string(head):

result = "{ "

node = head[1] # Node following head

while node != None:

result += str(node[0]) + " " # Add to result string

node = node[1] # Move to next node

return result + "}"

Usage:

print(ll.to_string(head)) # { 1 2 3 ... 18 19 20 }

Hence, we move along the node chain and add str(node[0]) ” ”+ to the

result string for each node.

Implementing Linked Lists Computer Science

Implementing Data Structures 6(40)

count(head) and contains(head, n)

Returns the number of

elements stored in list

def count(head):

c = 0

node = head[1]

while node != None:

c += 1

node = node[1]

return c

Returns True if n is in

list, otherwise False

def contains(head, n):

node = head[1]

while node != None:

if node[0] == n:

return True

node = node[1]

return False

Same idea used twice, we start in node after head (node = head[1]) and move

along node chain as long as we have more nodes (while node != None:).

Implementing Linked Lists Computer Science

Implementing Data Structures 7(40)

Function get(head, pos) raises exception

Get element at position pos, raise IndexError

if position pos is out of range

def get(head, pos):

n = count(head) # Costly!

if 0 <= pos < n: # If valid pos

node = head[1]

for i in range(pos): # Move pos steps forward

node = node[1]

return node[0]

else: # Raise excepition

msg = f"Index {pos} out valid range [0,{n-1}]"

raise IndexError(msg)

Calling count(head) (which traverses the list) for each call to

get(head, pos) is costly. Solution: Introduce global variable size keeping

track of the current list size.

Implementing Linked Lists Computer Science

Implementing Data Structures 8(40)

The remove(pos) function

value:
next:
Node

value:
next:
Node

value:
next:
Node

value:
next:
Node

List
head:
size: 4

null
5 2 8 6

New

Old Garbage collected

Note: We can’t move backwards ⇒ we must operate from the node before the node
we want to remove.

Remove and return element pos

def remove(head, pos):

Find node before pos

before = head[1]

for i in range(pos-1): # Move pos-1 steps forward

before = before[1]

#By-pass pos node

delete = before[1] # Node to be removed

before[1] = delete[1] # By-pass "delete"

return delete[0]

Implementing Linked Lists Computer Science

Implementing Data Structures 9(40)

Variant 1: Head and tail

Problem: append() ⇒ step through the whole list ⇒ very slow
(Serious since append() is a frequently used operation.)
Solution: Keep also track of the tail node ⇒ we can jump there directly

value:
next:
Node

value:
next:
Node

value:
next:
Node

value:
next:
Node

null
5 2 8 6

List
tail:
head:
size: 4

Implementing Linked Lists Computer Science

Implementing Data Structures 10(40)

Variant 2: Double-linked List

Problem: We can only traverse list in one direction
⇒ (for example) printing the list content backwards is very slow
Solution: Each node has a field prev that references the previous node.

Node
next:
prev:
value:

Node
next:
prev:
value:

Node
next:
prev:
value:

Node
next:
prev:
value:

DLList
tail:
head:
size: 4

null
null

5 8 0 2

Implementing Linked Lists Computer Science

Implementing Data Structures 11(40)

My linked list vs Pythons list

I Python lists are not linked lists

I Python lists are implemented as dynamic arrays
(They start using a mutable C array of size (say) 1000 to store the data.
They then double the size every time we need more size ⇒ sizes are 1000,
2000, 4000, 8000, ...)

I Faster than linked lists in operations like append and get

(since we don’t need to move along the chain of nodes).

I Slower than linked list in operations like remove(0) since it must shuffle
all elements one step left to cover for the hole at position 0.

I Python lists are much (much!) faster since implemented in C

I Many time critical parts in Python are implemented in highly optimized C
code and called from the main program by the virtual machine.

However, linked data structures (one node referencing others) is an important

concept that are used in trees and graphs.

Implementing Linked Lists Computer Science

Implementing Data Structures 12(40)

How do we recognize a good algorithm?

I We expect each algorithm to be correct . . .

I . . . but there might be more than one correct algorithm.

I Which one is the best?

Possible criteria:

I The algorithm is easy to understand and implement
I simple
I clearly written
I well documented
I . . .

I The algorithm is efficient
I uses resources efficiently, for example memory or network capacity
I time efficient ⇒ fast!

We will concentrate on time efficiency but that does NOT mean that the
other criteria are not important. (As a first try I will always go for the
simple solution. It might be good enough.)

Time Complexity – Introduction Computer Science

Implementing Data Structures 13(40)

Asymptotic Analysis

We would like to:

I Analyse algorithms without knowing on which computer they will execute

I Answer questions like ”Which of these two algorithms are faster if the
input size is big?”.

I Answer questions like ”How much will the computation time increase if
the size of the input is multiplied by 2?”

We will achieve this by using asymptotic analysis and the big-oh notation ⇒ a
Time Complexity estimate.

Asymptotic Analysis ⇒ Behaviour when input size is big.

Time Complexity – Introduction Computer Science

Implementing Data Structures 14(40)

Time Complexity (Introduction)

Time Complexity: An estimate of required computation time.

I Number of required computations often depend on input data

I Find integer in a list ⇒ time depends on list size N
I Check if N is a prime number ⇒ time depends on N size
I Sort list ⇒ time depends on list size N

I We say that an algorithm have time complexity

I O(N) if computation time is proportional to N
I O(N2) if computation time is proportional to N2

I O(1) if computation time is constant
I in general, O(F (N)) if computation time is proportional to F (N)

I O(. . .) is pronounced Big-Oh of (Example Big-Oh of N-square.)

I or sometimes Ordo of . . .

I Basic assumption: Each simple computation takes time 1

I Simple operations: +,-,\,*,%, assignment, . . .

I We are always interested in the worst case scenario
⇒ the case requiring most computations

Time Complexity – Introduction Computer Science

Implementing Data Structures 15(40)

Time Complexity: Examples

I Print multiplication table for N ⇒ O(N2)

def print_table(N):

for i in range(1,N+1): # O(N)

for j in range(1,N+1): # O(N)

print(i*j)

print statement is executed N × N times ⇒ O(N2)

I Search for X in list of size N ⇒ O(N)

def search(X, lst):

for n in lst: # O(N)

if n == X: # O(1) executed N times

return True

return False

Note: A loop with N iterations over a body with time complexity O(X)

⇒ time complexity O(N · X)

Time Complexity – Introduction Computer Science

Implementing Data Structures 16(40)

Asymptotic Handling in Practise

Assume time T (n) = in terms of input size n.

1. Constant factors do not matter.

2. In a sum, only the term that grows fastest is important.

I T (n) = 3n ⇒ O(n),

I T (n) = 4n4 − 45n3 + 102n + 5 ⇒ O(n4),

I T (n) = 16n − 3n · log2(n) + 102 ⇒ O(n · log2(n)),

I T (n) = 9168n88 − 3n · log2(n) + 5 · 2n ⇒ O(2n)

I The O(...) notation describes the behaviour when input size is big

I We are always interested in the worst-case scenario
⇒ Not when we are finding an element at the first position in a list

Time Complexity – Definition Computer Science

Implementing Data Structures 17(40)

Frequent Big-Oh Expressions

O(1) At most constant time, i.e. not dependent on the size of the input.

O(log n) At most a constant times the logarithm of the input size.

O(n) At most proportional to n.

O(n log n) At most a constant times n times the logarithm of n.

O(n2) At most a constant times the square of n.

O(n3) At most a constant times the cube of n.

O(2n) At most exponential to n.

They are ordered from fastest (O(1)) to slowest (O(2n)).

Time Complexity – Definition Computer Science

Implementing Data Structures 18(40)

Linear Search

I Problem: Find x in list with N elements

I Basic Idea: Sequential search

def search(X, lst):

for n in lst: # O(N)

if n == X: # O(1) executed N times

return True

return False

I We must check every element in the list
⇒ O(N), where N is the list/array size.

Q: Do we have better algorithms?

A: No, not for an arbitrary list (in a single-core machine).

Time Complexity – Definition Computer Science

Implementing Data Structures 19(40)

Binary Search

I Problem: Find n in list with N elements

I Assumption: The list is sorted

I Basic idea: Look at the middle element m = arr [M]

I If n = m, return True
I If n < m, repeat search in [0,M-1]
I If n > m, repeat search in [M+1,N]

I Each “search” halves the problem
⇒ T (N) = T (N/2) + O(1)

I n not in list ⇒ empty list in next search

Find 8 i [1,3,5,7,8,9,10] ==> middle element is 7 ==>

Find 8 i [8,9,10] ==> middle element is 9 ==>

Find 8 i [8] ==> OK!

I Much faster than linear search
⇒ Might be worth sorting the list if searched many times.

Time Complexity – Definition Computer Science

Implementing Data Structures 20(40)

Binary Search

I Steps (time) required to search list of different sizes

I Size: 1 ⇒ Time = 1
I Size: 2 ⇒ Time = 2
I Size: 4 ⇒ Time = 3
I Size: 8 ⇒ Time = 4
I Size: 16 ⇒ Time = 5
I Size: 32 ⇒ Time = 6
I ...
I Size: 2p ⇒ Time = p + 1

I Thus, N ∝ 2t (Size as a function of time)

I ⇒ t ∝ log2(N) (Time as a function of size)

I ⇒ T (N) = O(log2(N))

In general, an algorithm that halves the problem in a fix number of

computations has time-complexity O(log2(N))

Time Complexity – Definition Computer Science

Implementing Data Structures 21(40)

Recursive Binary Search

Returns True if x in list lst, otherwise False

def binary_search(lst, low, high, x):

if high < low: # Element is not present in the list

return False

else:

mid = (high + low) // 2 # Find mid position

if lst[mid] == x:

return True

elif lst[mid] > x: # Search lower half

return binary_search(lst, low, mid - 1, x)

else: # Search higher half

return binary_search(lst, mid + 1, high, x)

Program starts

arr = [2, 3, 4, 10, 40]

x = 10

if binary_search(arr, 0, len(arr)-1, x):

print("Element is present at index", str(result))

else:

print("Element is not present in array")

Time Complexity – Definition Computer Science

Implementing Data Structures 22(40)

A 10 Minute Break

zzzzzzzzzzzzz ...

Time Complexity – Definition Computer Science

Implementing Data Structures 23(40)

Hashing – A Brief Presentation

element integer

pos

position [1,N]

compute
hash value function

apply hash

1

2

3

4

5

N

L

L

L

L

L

L

1

2

3

4

5

N

insert if not
already added

list

A hash based set implementation
Assume table with N buckets (A pair position/list)

I Associate each element with a hash value (an integer): element --> int

I Apply hash function (maps hash value to a bucket): int --> bucket

I Add to the bucket (the list part) if not already added

Implementing Hashing Computer Science

Implementing Data Structures 24(40)

Hashing – A Concrete Example

A hash table for strings
Assume that ...

I We have a table with 64 buckets (current bucket size)

I We compute the hash value for a string by summing up the ASCII codes for each
character

I We use a simple modulus operator (... % 64) as our hash function

Example

I Adding "Hello" ⇒ hash value 500 (= 72 + 101 + 108 + 108 + 111)
⇒ bucket 52 (since 500 % 64 = 52)
⇒ insert "Hello" in bucket 52 (if not already added)

I Adding "Jonas" ⇒ hash value 507 ⇒ bucket 59 (= 507 % 64)
⇒ insert "Jonas" in bucket 59 (if not already added)

Implementing Hashing Computer Science

Implementing Data Structures 25(40)

Hashing – Result

Assume that:

I all elements are evenly distributed across all buckets
⇒ puts demands on the hash values/functions

I number of elements ≈ number of buckets
⇒ average bucket size is ≈ 1

Table access then involves:

1. Compute hash value

2. Decide which bucket to use

3. Search list (of average size 1)

Result: add/contains/remove executes in fix number of steps independent of
the number of stored elements ⇒ O(1)

Implementing Hashing Computer Science

Implementing Data Structures 26(40)

Rehashing
I Number of elements ≈ number of buckets in order to maintain O(1) for

add/contains/remove

I Hence, number of buckets must increase when we add more elements

I This process is called rehashing

I For example, each time number of elements equals number of buckets

1. Make a copy of bucket list
2. Clear bucket list and and make it twice as large
3. For each element in the copy: add it to enlarged bucket list using the add

function
4. Continue with the enlarged bucket list

I Notice
I Rehashing only occurs at certain points (when number of elements

equals number of buckets)
I We double the bucket list size each time ⇒ 100, 200, 400, 800,

1600, 3200, ...
I It is important that you add all elements using the add function to

make sure that each of them is inserted in the correct bucket in the
new enlarged bucket list.

Implementing Hashing Computer Science

Implementing Data Structures 27(40)

Binary Search Trees (BST)

1 3

6

4

5 9

8

2

Note:

I A tree consists of nodes

I The top-most node (4) is called the root

I Binary trees ⇒ a maximum of two children for each node

I Binary search trees ⇒ left child is always smaller than right child

Question: Where should 7 be placed?

Binary Search Trees Computer Science

Implementing Data Structures 28(40)

Implementing Binary Search Trees (BST)

The following slides will outline the basic ideas for how to implement a set using
binary search tree.

I It is not Python code! (Starting point is Java)

I Each node has three attributes: node.value, node.left, node.right storing
the node value, and it’s left and right child

I node.left (or node.right) equals null ⇒ no such child

I In a BST based dictionary (map or table) each node would have four attributes:
node.key, node.value, node.left, node.right

I Implementing a BST based map is a part of the mini-project

I Implementing a hashing based set is a part of the mini-project

Binary Search Trees Computer Science

Implementing Data Structures 29(40)

The recursive function add(node, n)
Add value n to the tree. Initially called as add(root, n)

add (node , n) { // r e c u r s i v e add
i f (n < node . v a l u e) { // add to l e f t branch

i f (node . l e f t == n u l l)
node . l e f t = new Node (n u l l , n u l l , n)

e l s e
add (node . l e f t , n) // Re cu r s i v e c a l l

}
e l s e i f (n > node . v a l u e) { // add to r i g h t branch

i f (node . r i g h t == n u l l)
node . r i g h t = new Node (n u l l , n u l l , n)

e l s e
add (node . r i g h t , n) // Re cu r s i v e c a l l

}
}

I The recursive functions describes what we do in each node

I If value n less than current node value:
I If node has no left child ⇒ attach new node as left child
I If node has left child ⇒ call add with left child as input

I Note: n == node.value ⇒ duplicate element ⇒ we do nothing

Binary Search Trees Computer Science

Implementing Data Structures 30(40)

Binary Search Trees: Two Examples
Ex1: 22,19,41,52,37,16,12,14,32 Ex2: 37,19,16,12,14,32,41,52,22

12

14

16 37

41

22

52

32

19 41

16

12

14

37

5232

19

22

Notice:

I Error in first figure! 16 is at wrong position!

I Same elements added in different order ⇒ two different trees

I No duplicated entries

Recursive method for look-up?

Binary Search Trees Computer Science

Implementing Data Structures 31(40)

The recursive function contains(node, n)

Returns true if value n is in the tree, otherwise false.
Initially called as contains(root, n)

c o n t a i n s (node , n) { // r e c u r s i v e look−up
i f (n < node . v a l u e) { // s e a r c h l e f t branch

i f (node . l e f t == n u l l)
r e t u r n f a l s e

e l s e
r e t u r n c o n t a i n s (node . l e f t , n) ;

}
e l s e i f (n > node . v a l u e) { // s e a r c h r i g h t branch

i f (r i g h t == n u l l)
r e t u r n f a l s e

e l s e
r e t u r n c o n t a i n s (node . r i g h t , n) ;

}
r e t u r n t r u e ; // Found !

}

I Similar to add but we return false when we find a missing child

Binary Search Trees Computer Science

Implementing Data Structures 32(40)

Binary Search Trees: Two Examples
Ex1: Search for 14 Ex2: Search for 34

12

14

16 37

41

22

52

32

19 41

16

12

14

37

5232

19

22 ??

Notice:

I Search 14: completed after 4 steps

I Search 34: completed after 3 steps

I Similar to Binary Search in sorted list

I In general: A search in a tree with N elements requires log2(N) steps
⇒ Time-Complexity for add, remove, contains is O(log2(N))

Exercise: Find insertion order for 1,2,3,4,5,6,7 that (on average) gives:

I a) the fastest search? b) the slowest search?

Binary Search Trees Computer Science

Implementing Data Structures 33(40)

Balanced Trees and Speed

From previous slide: fastest search: 4,2,6,1,3,5,7, slowest search: 1,2,3,4,5,6,7

I Balanced tree ⇒ uniform tree with minimum depth

I ⇒ Every level of the tree is full

I A balanced tree with depth n contains 2n+1 − 1 elements

I depth n ⇒ 2n+1 − 1 elements can be searched in n steps

I Examples

I n = 10 ⇒ tree size 2047
I n = 15 ⇒ tree size 65535
I n = 20 ⇒ tree size 2097151
I n = 30 ⇒ tree size 2147483647
I n = 40 ⇒ tree size 2199023255551

I This is very fast compared to sequential search for larger sets

I Microseconds rather than seconds

I More advanced BST algorithms (e.g. Red-Black Trees) always keep the tree
balanced ⇒ no need to worry about adding elements in a certain order.

Binary Search Trees Computer Science

Implementing Data Structures 34(40)

Time-complexity for Hashing and BSTs?

Time-complexity for lookup in hash tables and binary search trees?

Hash tables

I Assume number of buckets ≥ number of elements and that elements are evenly

distributed over all buckets. We can then look up an element in three steps

1. compute hash value
2. identify bucket
3. traverse (very short) list

⇒ A fix number of computations (independent of table size) ⇒ O(1)

Binary Search Trees

I 1) Each visited node halves the number of remaining elements, and
2) The number of operations performed in each node is fix
⇒ Very similar to binary search ⇒ O(log2(N))

Binary Search Trees Computer Science

Implementing Data Structures 35(40)

remove(...) – A nightmare, dropped!

remove (i n t n) {
i f (n<v a l u e) {

i f (l e f t != n u l l) l e f t = l e f t . remove (n) ;
}
e l s e i f (n>v a l u e) {

i f (r i g h t != n u l l) r i g h t = r i g h t . remove (n) ;
}
e l s e { // remove t h i s node v a l u e

i f (l e f t==n u l l) r e t u r n r i g h t ;
e l s e i f (r i g h t==n u l l) r e t u r n l e f t ;
e l s e { // The t r i c k y pa r t !

i f (r i g h t . l e f t == n u l l) {
v a l u e = r i g h t . v a l u e ;
r i g h t = r i g h t . r i g h t ; }

e l s e
v a l u e = r i g h t . d e l e t e m i n () ;

}
}
r e t u r n t h i s ;

}
i n t d e l e t e m i n () { // more code he r e . . .

i f (l e f t . l e f t==n u l l) {
i n t min = l e f t . v a l u e ;
l e f t = n u l l ;
r e t u r n min ; }

e l s e {
r e t u r n l e f t . d e l e t e m i n () ;

}
}

Binary Search Trees Computer Science

Implementing Data Structures 36(40)

The function print()

p r i n t t r e e (node) {
i f (node . l e f t != n u l l) // v i s i t l e f t c h i l d

p r i n t t r e e (node . l e f t)
p r i n t (” ” , node . v a l u e) // in−o r d e r p r i n t v a l u e
i f (node . r i g h t != n u l l) // v i s i t r i g h t c h i l d

p r i n t t r e e (node . r i g h t)
}

Apply function on the following tree: What is printed?

1 3

6

4

5 9

8

2

Binary Search Trees Computer Science

Implementing Data Structures 37(40)

In-order visit

1 3

6

4

5 9

8

2

1 3

62

4

5

8

9

Print-out: 1,2,3,4,5,6,8,9, ⇒ BST are sorted in principle.
Find min/max:

I Always pick the left-most child ⇒ the lowest added number

I Always pick the right-most child ⇒ the highest added number

Binary Search Trees Computer Science

Implementing Data Structures 38(40)

Binary Tree Visiting Strategies

Left-to-Right, In-order

visit left subtree (if exist)

visit node (Do something, e.g., print node value)

visit right subtree (if exist)

Right-to-Left, Post-order

visit right subtree (if exist)

visit left subtree (if exist)

visit node

I Left-to-Right, Right-to-Left ⇒ traversal strategies ⇒ decides in
which order we visit the children ⇒ a left or right traversal around the tree

I Pre-order, In-order, Post-order ⇒ decides when we do something
in the node ⇒ before (pre), in between (in), or after (post) we visit the
children.

Binary Search Trees Computer Science

Implementing Data Structures 39(40)

Mini-project preview

I The mini-project starts on Wednesday ⇒ problem task is published in Moodle

I Today (later on, Monday) we will present the project teams.

I Each team has three members

I The tutoring supervisors are putting together the teams

I Basic ideas

I A team consists of students from the same program
I Campus students with campus students
I Distance students with distance students
I Kalmar students with Kalmar students
I ...

I Thus, we will try to put together students having a similar study situation

I Contact your tutoring supervisor if you end up in ”wrong” team.

Binary Search Trees Computer Science

Implementing Data Structures 40(40)

	Implementing Linked Lists
	Time Complexity – Introduction
	Time Complexity – Definition
	Implementing Hashing
	Binary Search Trees

