Linnaeus Universityﬁg*

File 10 and Exceptions
1DV501 - Introduction to Programming

Jonas Lundberg, office B3024

Jonas.Lundberg@lnu.se

The slides are available in Moodle

September 28, 2020

Computer Science

File 10 and Exceptions 1(29)



Linnaeus University?:'ﬁ"*

Remember to ...

The Python Test
» Sign up for the first Python Test on Friday, October 23.
> Read information posted (as News) in Moodle.
> Registration is mandatory. Deadline October 16.
> Registration is now open in Moodle (Scroll down a bit to find it.)

Select courses for the spring semester
> All students must apply for spring semester courses
(Also students in programs where all courses are mandatory.)
> Application period: October 1 to October 15

» Program specific details should have been mailed to you, it is also
available in Program Moodle room.

Computer Science

File 10 and Exceptions 2(29)



Linnaeus University?:'r:"*

Assignment 3

> Assignment 3 will be published later on today (September 28)

> Assignment 3 should be submitted using Gitlab. This holds for all
students = campus, distance, as well as others " Others”.

» Instructions for how to use Gitlab will be published in Moodle. Post
questions in Slack if you have problems.

Computer Science

File 10 and Exceptions 3(29)



Linnaeus University?:is"*

Today ...

» Working with Files and Directories
» File input/output (10)

> Working text files

» Working with data files

» Errors and Exceptions

Reading instructions: 9.3, 12.1-12.6, 12.8

Computer Science

File 10 and Exceptions 4(29)



Linnaeus University?:f"*

The os module

import os # Operating system module

path = os.getcwd() # Get current working directory
print ("Current dir:", path)

subdir = os.chdir('jlnmsi_assignl') # Move to subdir jlnmsi_assignl
print("Moved to dir:", os.getcwd())

Output (fully qualified path names):

Current dir: /Users/jlnmsi/software/python_courses/1dv501
Moved to dir: /Users/jlnmsi/software/python_courses/1dv501/jlnmsi_assigni

> The os module gives support for queries related to files and directories

> os.getcwd() = name of current working directory

» The virtual machine’s start directory in this execution
» Not same as folder containing this program code
» Topmost directory inside Visual Studio Code

> os.chdir('jlnmsi_assignl') = change to child directory
> os.chdir('..') = change to parent directory

Working with Files and Directories Computer Science

File 10 and Exceptions 5(29)



Linnaeus Universityﬁ'j?*

Files and directories using module os

import os # Operating system module
path = os.getcwd() # Get current working directory
print("Current dir:", path) # ... /1DV501

1st = os.listdir(path) # List files and directories in path directory
for s in 1st:

print(s) # .DS_Store, jlnmsi_assign2, jlnmsi_assignl, .vscode
subdir = os.chdir('jlnmsi_assignl') # Move to subdir jlnmsi_assignl
print("\nMoved to dir:", os.getcwd()) # ... /1DV501/jlnmsi_assignl
1st = os.listdir(subdir) # List files and folders in subdir
for s in 1st:
if s.endswith(".py"): # Print files ending with ".py"
print(s) # time.py, tazx.py, shortname.py, quote.py, intere

> os.listdir(path) = List content (as strings) of directory path
Directory content = files and directories
Hidden entities (e.g. .vscode) have names starting with a .

Working with Files and Directories Computer Science

File 10 and Exceptions 6(29)



Linnaeus University?:f"*

Files and directories using os.scandir(...)
Previously: Using os.listdir(...), Now: Using os.scandir(...)

import os

def is_hidden(entry):
return entry.name.startswith(".")

def print_entries(list_of_entries):
for entry in list_of_entries:
if entry.is_file() and not is_hidden(entry):
print("File: ", entry.name, type(entry) )
elif entry.is_dir() and not is_hidden(entry):
print("Dir: ", entry.name, entry.path)

path = os.getcwd()

entries = os.scandir(path) # List of entries of type DirEntry
print_entries(entries) # See output on next slide

print ()

subdir = os.chdir('jlnmsi_assignl')
entries = os.scandir(subdir) # List of entries of type DirEntry
print_entries(entries) # See output on next slide

Working with Files and Directories Computer Science

File 10 and Exceptions 7(29)



Linnaeus University?:'ﬁ"*

Output from previous slide

/Users/jlnmsi/software/python_courses/1dv501

Dir: temp /Users/jlnmsi/software/python_courses/1dv501/temp
Dir: jlnmsi_assign2 /Users/ ... /python_courses/1dv501/jlnmsi_assign2
Dir: jlnmsi_assignl /Users/ ... /python_courses/1dv501/jlnmsi_assigni
File: jlnmsi_assign2.zip <class 'posix.DirEntry'>
File: time.py <class 'posix.DirEntry'>
File: tax.py <class 'posix.DirEntry'>
File: shortname.py <class 'posix.DirEntry'>
File: quote.py <class 'posix.DirEntry'>
File: interest.py <class 'posix.DirEntry'>
File: oddpositive.py <class 'posix.DirEntry'>
File: sumofthree.py <class 'posix.DirEntry'>
File: print.py <class 'posix.DirEntry'>
File: randomsum.py <class 'posix.DirEntry'>
File: 1largest.py <class 'posix.DirEntry'>
File: squarecolor.py <class 'posix.DirEntry'>
File: area.py <class 'posix.DirEntry'>
File: fahrenheit.py <class 'posix.DirEntry'>
File: change.py <class 'posix.DirEntry'>
Working with Files and Directories Computer Science

File 10 and Exceptions

8(29)



Linnaeus University?:is"*

Files and directories - continued
The os.listdir(...) approach
> os.listdir(path) = all file and directory names in directory path

> Problem: all names are given as strings
= hard to know if it is a file or a directory

> Suitable approach when you quickly wants to find the content of a given
directory

The os.scandir(...) approach
> os.scandir(path) =- all files and directories in path as DirEntry objects
> Each DirEntry object entry comes with two attributes:
» entry.name = short local name of file or directory
» entry.path = fully qualified name of file or directory
and two methods
> entry.is_file() = True if entry is a file
» entry.is_dir() = True if entry is a directory
> Suitable approach for more complex problems like:
» List all python files in a given directory

» Find all sub-directories (transitively) of a given directory

Working with Files and Directories Computer Science

File 10 and Exceptions 9(29)



Linnaeus Universityﬁ'j?*

Count subdirectories

import os
# Recursive function to count subdirectories to path
def count_dirs(path):
# print (path)
no_dir = 1
entries = os.scandir(path)
for entry in entries:
if entry.is_dir():
no_dir += count_dirs(entry.path) # Recursive call
return no_dir

# Program starts
path = "/Users/jlnmsi/Documents/Teaching"
n_dirs = count_dirs(path)

print (£"Dir {path} contains {n_dirs} subdirectories")
# Output: Dir /Users/jlnmsi/Documents/Teaching contains 3620 subdirectories

> count_dirs(path) is a recursive function that visits all subdirectories
> Visits all subdirectories transitively = subdirs to subdirs to subdirs ...
> Difficult to handle without recursion

Computer Science
10(29)

Working with Files and Directories

File 10 and Exceptions



Linnaeus University?:f"*

Reading text from file

) File mamma_mia.txt
import os

Mamma mia, here I go again

path = os.getcwd() My my, how can I resist you?
path += "/temp/mamma_mia.txt" Mamma mia, does it show again
print("Reading from ",path) My my, just how much I've missed you?

file = open(path,"r")

line_count = 0 Program output:

for line in file:
line_count += 1 Reading from ... /1dv501/temp/mamma_mia.txt
print(line) Mamma mia, here I go again

file.close()

print("Line count: ",line_count) My my, how can I resist you?

> file = open(path,"r") = open

. . Mamma mia, does it show again
file path for reading ("r)

> file is here an object representing a My my, just how much I've missed you?
connection to a file
P> for line in file: = read from
file line by line Line count: 5
Ugly printout since line includes a "\n" and mamma_mix.txt ends with an empty line.
File 10 Computer Science

File 10 and Exceptions 11(29)



Improved file reading

path = ...

file = open(path,"r")

for line in file:
print(line.strip())

file.close()

Ugly print problem solved by
using print(line.strip())
= remove trailing "\n"

Linnaeus University?:is"*

path = ...
file = open(path,"r")
full_text = ""

for line in file:
full_text += line

file.close()

print(full_text)

We first store entire text in a string (includ-
ing linebreaks)

Reading text is easy, just remember: a) We read the text line by line, b) Lines also
includes a final "\n", and c) Empty lines are also included.

It is important to close the file connections (file.close()) once reading/writing is
done. A non-closed connection might cause problems later on when you try to access

a file.

File 10
File 10 and Exceptions

Computer Science

12(29)



Linnaeus University?:f"*

Writing text to a file

path =

h =
full_text = ... pat

lines = ["dO\H" S "re\n" R "mi\n" s "fa\n" s "so\n" s “la\n“]
file = open(path,"w"
file.write(full_text)
file.close()

file = open(path,"w")
file.writelines(lines)
file.close()

Write entire text to file.
Result: Text in file has same
formatting as full_text.

We write text line by line to file.
Result: do,re,mi,fa,so,la as six separate lines.

Writing text is also easy, just remember to handle the line breaks.

Recommendations

> Always look at the content of the file you are about to read to understand how it
is organized

> Always open the output file when writing to a file to inspect the result

File 10 Computer Science

File 10 and Exceptions 13(29)



Linnaeus University?:is"*

Reading and Writing text - Summary

We use open(...) to make a file connection

> open(path,"r") = open file for reading. Program will crash is file doesn't
exists (or is read protected)

> open(path,"r") = open file for writing. The file will be created if it doesn't
exist, or replaced if it does exist.

> open(path,"a") = open file for appending = add new text at the end of a file.
The file will be created if it doesn't exist, or appended if it does exist.

> Default is "r" = open(path) means open file for reading

file in file = open(...) is a file object. File object usage:
> for line in file: = read one line at the time
> full_text = file.read() = read entire file content
> file.write(full_text) = write entire text
>

file.writelines(lines) where lines is a list of strings = write line by line
(but not adding any linebreaks)

File 10 Computer Science

File 10 and Exceptions 14(29)



Linnaeus University?:f"*

Safe file handling with with-as

# Safe file reading
path = ...
with open(path, "r") as file:
for line in file:
print( line.strip() )

# Safe file writing

path = ...

with open(path, "w") as file:
file.write("First line to add\n")
file.write("Last line to add\n")

> with and as are two Python keywords

> The with-as statement includes file closing and was introduced to make sure
that an open file is always closed (no matter what happens)

> Although a bit cryptic, it is the recommended approach to open a file.

File 10 Computer Science

File 10 and Exceptions 15(29)



Linnaeus University?:'r;*

A 10 minute break?

ZZ77777777777777777

File 10 Computer Science

File 10 and Exceptions 16(29)



Linnaeus University?:is"*

Runtime Errors

def div(a,b):
return a/b

def m(a,b):
return div(a,b)

# Program starts
print( m(5,0) )
Execution output
Traceback (most recent call last):
File "/Users/jlnmsi/software/1dv601/errors.py", line 8, in <module>
print( m(5,0) )
File "/Users/jlnmsi/software/1dv501/errors.py", line 5, in m
return div(a,b)
File "/Users/jlnmsi/software/1dv501/errors.py", line 2, in div
return a/b
ZeroDivisionError: division by zero
Error message interpretation: From a call print( m(5,0) ) in line 8, via a call
div(a,b) at line 5, we had a ZeroDivisionError in line 2.

Hence, the error message not only points out where the error occurred, it also

describes the executions trace leading up to the error.
Errors and Exceptions Computer Science

File 10 and Exceptions 17(29)



Linnaeus University?:f"*

A first look at error handling

# Returns a given element in a list
def get_element_at(lst,index):
if 0 <= index < len(lst):
return lst[index]
else:

return -99 # What else am I supposed to do?

# Program starts
a = list( range(10) )
n = get_element_at(a,15) # Index out of range

> The function get_element_at(1lst,index) returns -99 when used with

an index out of range. Is this really the best way to handle a detected
error? Or should we let the program crash?

» In general, how do we handle errors due to an incorrect use of a function?

Errors and Exceptions Computer Science

18(29)

File 10 and Exceptions



Linnaeus University?:f"*

Exceptions - A first example

try:
X = 5%y # y 15 not defined
print(" x =", x)

except NameError:
print("An exception occurred")

Output: An exception occurred
> try and except are two Python keywords used for exception handling
» Errors occurring in the try block can be handled in the except block
> Using this approach we can avoid ugly traceback printouts (see slide 15).
>

We can also decide to take some action (e.g. try again) when an error
occurs.

Errors and Exceptions Computer Science

File 10 and Exceptions 19(29)



Linnaeus University?:'r"*
Another exception example

def div(a,b):
return a/b # Error if b = 0

def m(a,b): return div(a,b)

# Program starts
try:
X, y=25,0
div = m(x,y)
print(£"{x} divided by {y} is {div}")
except ZeroDivisionError:
print("Division by zero")

Output: Division by zero

> Errors occurring due to code or calls executed in the try block

> ... can be handled in the enclosing except block
> The execution jumps directly from the error (in function div(a,b)) to the
except block = print(f"{x} ...") is not executed.
Errors and Exceptions Computer Science

File 10 and Exceptions 20(29)



Linnaeus Universityﬁ'p*

One more exception example

repeat = True

while repeat:
x = int( input("Enter integer x: "))
y = int( input("Enter integer y: "))

try:
result = x/y # Error if y = 0
print(£"{x} divided by {y} is {result}")
repeat = False # Terminates loop

except ZeroDivisionError:
print("Dividing by zero, try again ...\n")

» The program will keep asking the user for input as long y is zero.

» Each time zero is entered for y, the error message
Dividing by zero, try again ... will be displayed.

Computer Science

21(29)

Errors and Exceptions

File 10 and Exceptions



Linnaeus Universityﬁ'j?*
Raising exceptions

# A function with error handling
def get_element_at(lst,p):
if 0 <= p < len(lst):
return 1st[p]
else:
err_msg = f"Index {p} not in valid range [0,{len(lst)-1}]"
raise IndexError(err_msg) # We ratse an exception

# Program starts
try:
a = list( range(10) )
n = get_element_at(a,15) # Index out of range
except IndexError as e:
print("An error has occurred!")
print(type(e)," ==> ", e)
Output:

An error has occurred!
<class 'IndexError'> ==> Index 15 not in valid range [0, 9]

Errors and Exceptions Computer Science

File 10 and Exceptions 22(29)



Errors and Exceptions

Linnaeus Universityﬁ'i%
Raising exceptions - A tedious example

def input_odd_int():

s = input("Enter an odd integer: ")
try:

n = int(s) # Fails ©1f s not an integer
except ValueError:

raise ValueError("The input must be an integer!")
if n%2 ==

raise ValueError("The integer must be odd!")
return n

# Program starts
try:
n = input_odd_int ()
print("A valid input is", n)
except ValueError as e:
print(type(e),"==>",e)
A function that raises a ValueError if input is a non-integer or an even
number. Do not use this approach in assignment if not explicitly asked for.

Computer Science

File 10 and Exceptions 23(29)



Linnaeus University?;f"*

Exceptions: Basics

Python handles all errors and abnormal conditions using exceptions.
An exception is an object that encapsulates information about an error.

Error = program raises (or throws) an exception.
(e.g., raise IndexError(err_msg)

= execution halts immediately

= call stack is unwounded until an appropriate enclosing exception handler is
found (e.g., except IndexError as e:).

> No enclosing exception handler = The virtual machine catches exception,
abruptly terminates program, and prints a stack trace

> Advantages

» Uniform handling of all abnormal conditions
» Separation of responsibilities:
The programmer identifies problems and raises exceptions.
The client (or user) determines how to handle the problem
(ignore and continue, recover, try again, exit, ...).
» Here we talk about a programmer responsible for the development of a
software component, and a user or client (most likely also a programmer)
that uses the component.

Errors and Exceptions Computer Science

File 10 and Exceptions 24(29)



Linnaeus University?;f"*

An Unspoken Contract

Background
> The programmer can't know how a user wants to deal with an error.
> Different users and situations = different types of error handling.
An Unspoken Contract
> The programmer is responsible for identifying errors and to notify the user
by raising an exception.
» The user/client decides how to handle the exception.
Example: The function get_element_at(1st,index)
» The programmer finds the faulty index (outside the range) =
raise IndexError("Index out of range: " + str(index))

> The function user can (if he/she likes) catch and handle the error

try:
a = list( range(10) )
n = get_element_at(a,15) # Index out of range
except IndexError as e:
print("An error has occurred!")
print(type(e)," ==> ",e)

Errors and Exceptions Computer Science

File 10 and Exceptions 25(29)



Linnaeus Universityﬁ'r"*
Handling multiple types of exceptions

We might have several except blocks. Each one handling a specific type of errors
try:

except IndexError as e:
"Do somethong with e"
except ValueError as e:
"Do somethong with e"
except Exception as e:
"Do somethong with e"
finally: # Always exzecuted
"Save what is possible. Close database connections, networks and so on"

> Repeated except = the first suitable is used.
> Exception is the base class for all exceptions = handles everything

> The finally block is always executed. It is mainly used to save what possibly
can be saved before the program crashes.

Errors and Exceptions Computer Science

File 10 and Exceptions 26(29)



Linnaeus University?:is"*

Built-in Errors to chose from

There are a number of built-in errors to chose from:

>

>

vVvyVvVvyy

>

IndexError is thrown when trying to access an item at an invalid index.
ImportError is thrown when a specified function can not be found.

TypeError is thrown when an operation or function is applied to an object of an
inappropriate type.

NameError is thrown when an object could not be found.

ZeroDivisionError is thrown when the second operator in the division is zero.
ValueError is thrown when a function’s argument is of an inappropriate type.
Exception handles all type of exceptions = catches everything

. and many more.

Hence, when you want to raise an exception, select a suitable error type, and put
together a suitable error message. The just raise ErrorType(err_msg).

Always position except Exception last if you are catching multiple error types.

Errors and Exceptions Computer Science

File 10 and Exceptions 27(29)



Linnaeus Universityﬁf"*

Handling 10Errors

import os

# Safe file reading handling IOETTOTS
path = os.getcwd()
path += "/temp/mamma_PIA.txt" # File name error!
try:
with open(path, "r") as file:
for line in file:
print( line.strip() )
except IOError as e:
print (type(e),"==>",e)
print("No such file: ",path)

> File 10 often results in errors. For example, reading from a non-existing (or read
protected) file.

» Thus, enclosing all critical file IO operations with a try-except block is a very
common programming pattern.

Errors and Exceptions Computer Science

File 10 and Exceptions 28(29)



Linnaeus University?:'ﬁ"*

Exceptions summary

In general

| 2

>
>

By enclosing error prone code with a try-except block we can catch and
handle errors.

By raising exceptions we can inform a user of an error

Basic idea: The programmer is responsible for identifying errors and to
notify the user by raising an exception. The user/client decides how to
handle the exception.

Are exceptions important?

> Exception handling is very important in larger (commercial) systems since
we don't want our customers to experience an ugly stack trace due to an
unhandled exception. A commercial system should never crash.

> It is less important for smaller projects when the user and programmer
often is the same group of persons. After a crash we simply try to fix the
problem and run the program again.

> Python is very liberal when it comes to exception handling. The
programmer decides when and if to handle a potential exception. Other
languages (like Java) is much stricter. Certain operations (like File 10)
must include exception handling.

Errors and Exceptions Computer Science

File 10 and Exceptions 29(29)



	Working with Files and Directories
	File IO
	Errors and Exceptions

