
Objects and Lists

1DV501 - Introduction to Programming

Jonas Lundberg, office B3024

Jonas.Lundberg@lnu.se

The slides are available in Moodle

September 19, 2020

Computer Science

Objects and Lists 1(36)

The Python Test

The first Python Test takes place on Friday, October 23.

I A 2 hour test where you will handle 2-3 programming exercises

I It will be based on the Python material covered in Assignments 1 and 2.

I You must be able to handle all exercises to pass the test.

I Allowed help:

I Your own laptop and your favorite IDE (e.g. Visual Studio Code)
I Internet access to the Python Language Reference

(https://docs.python.org/3)
I You will not be given access to any lecture slides, your own assignment

solutions, or any other Python resource.

I You will be monitored the whole time.

I A 2nd and 3rd attempt will be given in November and December

I Registration deadline: October 16 (at 23.55).
Registration is mandatory and will start in a few days in Moodle.

Computer Science

Objects and Lists 2(36)

The Python Test - Distance vs Campus

I For students staying in Sweden
I The test will take place at Campus Växjö or at Campus Kalmar.
I We will not allow any student living in Sweden to take the test remotely.
I Exact time and place for the test will be presented later on.

I For students staying abroad
I Will be given an opportunity to take the Python Test remotely.
I The test will be monitored using Zoom. You will be asked to setup a

webcam (or mobile phone) in such a way that a video of you and your
computer is in clear view during the test.

I More instructions related to the distance version of the Python Test will be
presented later on.

Computer Science

Objects and Lists 3(36)

Today ...

I Objects and Classes

I String Objects

I Fraction Objects

I Lists (introduction)

I List Methods

I List Slicing

I If time permits
I List Comprehensions
I Multidimesional Lists

I Programming example

Reading instructions: Sections 9.1, 9.2, 9.4, 10.1-10.10, 10.13-10.15
(in textbook by Halterman)

Computer Science

Objects and Lists 4(36)

Classes and Objects

I Primitive types (e.g. int) have simple values (e.g. 237)
and operations (e.g. +, -, *, /).

I Entities like for example a bank account have more complex values
⇒ they require a mixture of multiple values to be correctly described

I A class is a definition of a more complex type

I Values of a class are called objects (or instances of a class)

class bank_account Object 1 Object 2 Object 3

Owner: Jonas Henrik Nils

No: 4758-8696 3246-9744 5432-2347

Balance: 34.345kr 8.456kr 97.654kr

I Classes (e.g. bank_account) have more complex values
(e.g. Jonas, 4758-8696, 34.345kr)

I The current values associated with an objects (e.g.
Jonas, 4758-8696, 34.345kr) is called the object state.

Classes and Object Computer Science

Objects and Lists 5(36)

Methods

I Types like int have simple values like 237 and operations like *

I Classes have complex values and a set of operators called methods

I The class string has for example a method called upper()

s = "Hello" # "Hello" is an object of type/class string

s = s.upper() # Apply method on string object "Hello"

print(s) # Output: HELLO

I A class defines properties of a given type of objects

I A class definition (often a separate file) is a bit of code defining:

I Attributes: The data we associate with the class
(for example owner, account number, and saldo for a back account)

I Methods: Operations we can do on an object
(for example update_balance on bank_account object)

Classes and Object Computer Science

Objects and Lists 6(36)

Method Calls

I Classes come with a specific set of operators called methods

I The methods of class A can only be applied on objects of class A

I Methods are called (applied) on variables referencing an object

s = "Hello" # "hello" is an object of class string

print(s.upper()) # Output: HELLO

I General pattern for a method call

I In this lecture we look at a few common classes from the Python library

I We will not create our own classes

Classes and Object Computer Science

Objects and Lists 7(36)

The string class str

I All strings are objects of a predefined class str

print(type("Hello")) # Output: <class 'str'>

I We create new string objects using double "Hi" or single quotes 'Hi'

I The string class str has many methods

s = "Hello"

print(s.upper()) # Output: HELLO

print(s.count("l")) # Output: 2

print(s.find("lo")) # Output: 3

print(s.endswith("xxx")) # Output: False

print(s.isalpha()) # Output: True

I s.count("l") ⇒ number of "l" in string s

I s.find("lo") ⇒ first position of "lo" in string s

I s.endswith("xxx") ⇒ True if string s ends with "xxx"

I s.isalpha() ⇒ True if string s only contains letters
String objects and methods Computer Science

Objects and Lists 8(36)

The Python Standard Library

I The string class str comes with many methods

I It is hard to remember all details about all methods

I The official documentation for the string class is:

https://docs.python.org/3/library/

I The documentation is called the Python Standard Library

I The website documents all Python’s built-in types, classes and functions

I Hard reading since designed for professionals

I The docs.python.org/3/ documentation (and your IDE) will be your
only help at the Python Test ⇒ Get familiar with it!

String objects and methods Computer Science

Objects and Lists 9(36)

Methods vs Built-in Function
I Many built-in functions in Python can also be applied on strings

s = "abcABC"

print(len(s)) # Output:6

print(min(s)) # Output: A

print(max(s)) # Output: c

print(min("aA1")) # Output: 1

print(min("aA 1{")). # Output: " " (whitespace)

print(max("aA 1{")) # Output: {

I min(s) ⇒ first character in alphabetical order

I max(s) ⇒ last character in alphabetical order

I alphabetical order: First digits, than upper case, then lower case,
other character are sorted based on their ASCII number (I think)

I Notice also how built-in functions are applied (e.g. len(s)) compared to
how methods are applied (e.g. s.upper())

String objects and methods Computer Science

Objects and Lists 10(36)

The class Fraction
The module fractions contains a class Fraction

from fractions import Fraction

f1 = Fraction(1,2) # Create Fraction object 1/2

f2 = Fraction(1,3)

fsum = f1+f2 # Store 1/2 + 1/3 in variable fsum

print(f1, type(f1)) # Output: 1/2 <class 'fractions.Fraction'>

print(fsum) # Output: 5/6

print(fsum.numerator) # Output: 5

print(fsum.denominator) # Output: 6

I We create a Fraction object 1/2 by calling a method Fraction(1,2)

Methods used to create new objects are called constructors

I Creating a new object of class A using a constructor named A, is the
standard approach

I fsum.numerator is not a method call, we are accessing the attribute
called numerator ⇒ the data values representing the object state

Fraction objects and methods Computer Science

Objects and Lists 11(36)

Simple Fraction example

from fractions import Fraction

f = 0

for n in range(2,11):

f = f + Fraction(1,n) # 1/2 + 1/3 + 1/4 + ... + 1/10

print(f, float(f)) # Output: 4861/2520 1.928968253968254

I We introduce class Fraction just to show how a typical class is used

I Objects in a typical class are created using constructors

I String objects created using " " or ' ' is an exception

I The string object creation (and lists and tuples objects) is simplified since
their creation is very common

Fraction objects and methods Computer Science

Objects and Lists 12(36)

Data Structures – Introduction

I We often need to handle large sets of data

I A data structure is a model for storing/handling such data sets

I Scenarios where data structures are needed

1. Students in a course
2. Measurements from an experiment
3. Queue to get an apartment at our campus
4. Telephone numbers in Stockholm

I Different scenarios require different data structure properties

I Data should be ordered
I Not the same element twice
I Important that look-up is fast
I In general: Important that operations X,Y,Z are fast

I Selecting data structure is a design decision ⇒ might affect performance,
modifiability, and program comprehension.

I Today: Lists, later on tuples, sets, and dictionaries

Working with lists Computer Science

Objects and Lists 13(36)

Introducing lists

l = [1,2,3,4,5] # A list containing 1,2,3,4,5

print(l, type(l)) # Output: [1, 2, 3, 4, 5] <class 'list'>

print(l[0], type(l[0])) # Output: 1 <class 'int'>

I A list like [1,2,3,4,5] is an object of class list

I We create lists using enclosing square brackets

I They represent a sequence of data, each value is called an element

I We can access individual element using square brackets like l[0]

I The first position is 0 ⇒ l[0] is the first element

I [1,2,3,4,5] is an integer list, but we can create lists of any type (or
with mixed types)

I list is a built-in type ⇒ no need for any import statement

Working with lists Computer Science

Objects and Lists 14(36)

Manipulating lists

lst = [1,2,3,4,5]

lst[2] = 99 # Replace element at position 2

print(lst) # Output: [1, 2, 99, 4, 5]

Iterate over all list indices

for i in range(len(lst)):

print(lst[i], end=" ") # Output: 1 2 99 4 5

print()

Iterate over all list elements

for n in lst:

print(n, end=" ") # Output: 1 2 99 4 5

print()

I We can replace a list element using lst[2] = 99

I Iteration using indices: for i in range(len(lst)):

I Iteration using element directly: for n in lst:
Working with lists Computer Science

Objects and Lists 15(36)

Building lists
Python supports several ways of building a list besides enumerating all elements

odd = [1,3,5]

even = [2,4,6]

zeros = 3*[0] # List multiplication

lst = odd + even + zeros # List concatenation

print(lst) # Output: [1, 3, 5, 2, 4, 6, 0, 0, 0]

lst += [10]

print(lst) # Output: [1, 3, 5, 2, 4, 6, 0, 0, 0, 10]

for i in range(100,141,10):

odd += [i]

print(odd) # [1, 3, 5, 100, 110, 120, 130, 140]

I Hence, we can construct new lists by adding two (or more) lists

I Very much like string concatenation and string multiplication. You will see
that strings and lists have a lot of properties in common.

Working with lists Computer Science

Objects and Lists 16(36)

Example with list methods

The list class comes with several methods

animals = ['dog', 'cat', 'rabbit', 'wolf']

animals.append('tiger') # Add 'tiger' at the end of the list

print(animals) # ['dog', 'cat', 'rabbit', 'wolf', 'tiger']

animals.insert(0,'fox') # Insert 'fox' at position 0

print(animals) # ['fox', 'dog', 'cat', 'rabbit', 'wolf', 'tiger']

animals.remove('rabbit') # Remove first instance of 'rabbit'

print(animals) # ['fox', 'dog', 'cat', 'wolf', 'tiger']

animals.pop(1). # Remove element at position 1

print(animals) # ['fox', 'cat', 'wolf', 'tiger']

animals.sort() # Sort alphabetically

print(animals) # ['cat', 'fox', 'tiger', 'wolf']

All these methods manipulates (changes) the list content.

Working with lists Computer Science

Objects and Lists 17(36)

More list methods

List methods in addition to append, insert, remove, pop, and sort

I count(): Returns the number of elements in the list

I index(): Returns the position where n first occurs

I reverse(): Reverses the order of the elements in the list

I copy(): Returns a copy of the list (a new list)

I clear(): Removes all elements from the list

I extend(list 2): Appends list2 to this list

Working with lists Computer Science

Objects and Lists 18(36)

Example starting with an empty list

from random import randint

numbers = [] # We start with an empty list

for i in range(10):

rn = randint(1,100)

numbers.append(rn) # Append one element at the time

print(numbers) # [26, 90, 77, 82, 30, 48, 100, 85, 55, 88]

numbers.reverse() # Reverse order of element

print(numbers) # [88, 55, 85, 100, 48, 30, 82, 77, 90, 26]

numbers.sort() # Sort in ascending order

print(numbers) # [26, 30, 48, 55, 77, 82, 85, 88, 90, 100]

numbers.sort(reverse = True) # Sort in descending order

print(numbers) # [100, 90, 88, 85, 82, 77, 55, 48, 30, 26]

I We start with an empty list (numbers = []) and add new random numbers one
at the time (numbers.append(rn))

I By overriding default reverse = True in sort we change the sorting order

Working with lists Computer Science

Objects and Lists 19(36)

A 10 minute break?

Working with lists Computer Science

Objects and Lists 20(36)

Sequences
Strings and lists are both sequences and have a lot in common

s = "abcdef"

print(len(s)) # 5

print(max(s)) # e

print(min(s)) # a

print(s[3]) # d

print(s[1:3]) # bc

for c in s:

print(c, end=" ") # a b c d e

print()

a = [1,2,3,4,5,6]

print(len(a)) # 5

print(max(a)) # 5

print(min(a)) # 1

print(a[3]) # 4

print(a[1:3]) # [2, 3]

for n in a:

print(n, end=" ") # 1 2 3 4 5

print()

I Something that works for strings often works for list.

I However, certain things doesn’t make sense in both cases, for example
I split() doesn’t make sense for a list
I sum() doesn’t make sense for a string

I String object are immutable ⇒ can’t be modified once created

I List objects are mutable ⇒ can be modified after creation

Slicing sequences Computer Science

Objects and Lists 21(36)

Slicing sequences

Accessing certain parts using slicing works for all sequences

I Accessing certain parts using slicing works for all sequences

I Similar to range a slice looks like [start: stop: step]

I ... where all of them has certain default values

I Default values: start = 0, stop = len(...)+1, step = 1

I Remember that stop is not included when used

I Example: Various slices for list a = [0,1,2,3,4,5,6,7,8,9]

a[2:5] ==> [2, 3, 4]

a[2:9:2] ==> [2, 4, 6, 8]

a[6:2:-1] ==> [6, 5, 4, 3]

a[:6:] ==> [0, 1, 2, 3, 4, 5] (Uses default for start and step)

a[5::] ==> [5, 6, 7, 8, 9] (Uses default for stop and step

a[::] ==> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] (All default ==> list copy)

a[::-1] ==> [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] (Reverse copy)

I Remember that it also works for strings

I a[::-1] looks rather cryptic but is frequently used to reverse sequences

Slicing sequences Computer Science

Objects and Lists 22(36)

Example: Reversing strings
Two variants to reverse a string

def reverse(s):

rev = ""

for c in s: # Add characters in reverse order

rev = c + rev

return rev

Program starts

s = "Python"

rev1 = reverse(s) # Call function reverse(s)

print(rev1) # Output: nohtyP

rev2 = s[::-1] # Slicing

print(rev2) # Output: nohtyP

I Version 1: We build a new string by adding the characters in reverse order

I Version 2: We apply the slice s[::-1] ⇒ the entire string (start = 0,
stop = len(s)+1) in reverse order (step = -1)

Slicing sequences Computer Science

Objects and Lists 23(36)

Search using keyword in

def contains(s,x): # True iff string s contains character x

for c in s:

if c == x:

return True

return False

Program starts

s = "Python"

c = 'y'

if contains(s,c):

print(s, "contains", c) # Output: Python contains y

if c in s: # Search for char c in string s

print(s, "contains", c) # Output: Python contains y

a = [1,2,3,4,5]

n = 3

if n in a: # Search for number n in list a

print(a, "contains", n) # Output: [1, 2, 3, 4, 5] contains 3

Hence, the keyword in can also be used to search for elements in a sequence

Slicing sequences Computer Science

Objects and Lists 24(36)

Convert ranges and strings to lists

The function list() can convert strings and ranges to lists

a = list("Hello")

print(a, type(a)) # Output: ['H', 'e', 'l', 'l', 'o'] <class 'list'>

b = list(range(1,6))

print(b, type(b)) # Output: [1, 2, 3, 4, 5] <class 'list'>

I list() is a conversion function just like int(), float(), str(), and bool()

I list(x) tries to convert x into a list

I list(...) works for strings and ranges and a few other constructs

Slicing sequences Computer Science

Objects and Lists 25(36)

List Element Removal
Previously, using list class methods

animals = ['dog', 'cat', 'rabbit', 'wolf']

animals.remove('rabbit') # Remove first instance of 'rabbit'

print(animals) # ['dog', 'cat', 'wolf']

animals.pop(1). # Remove element at position 1

print(animals) # ['dog', 'wolf']

Using keyword del:

lst = list(range(10))

print(lst) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

del lst[1] # Delete element at position 1

print(lst) # [0, 2, 3, 4, 5, 6, 7, 8, 9]

del lst[3:6] # Delete positons 3 to 5

print(lst) # [0, 2, 3, 7, 8, 9]

I The keyword del can be used to delete elements or slices from a list

I It can also be used to remove elements from other types of data structures

Slicing sequences Computer Science

Objects and Lists 26(36)

Splitting strings using split()

s = input("Enter a few whitespace separated words: ")

words = s.split()

print(words)

s = input("Enter a few comma-separated words: ").split(",")

print(words)

Usage

Enter a few whitespace separated words: Do Re Mi Fa So La

['Do', 'Re', 'Mi', 'Fa', 'So', 'La']

Enter a few comma-separated words: Do,Re,Mi,Fa,So,La

['Do', 'Re', 'Mi', 'Fa', 'So', 'La']

I We can split a string into a list of words using the string method split()

I split() uses by default whitespace (" ") to separate words, ...

I ... but can be configured to use other strings (e.g. split(","))

Slicing sequences Computer Science

Objects and Lists 27(36)

Applying functions to lists
Three variants for applying function f (x) = x2 to all elements of a list

def square_list(a):

sq = []

for n in a:

sq.append(n*n)

return sq

def square(x): return x*x

Program starts

lst = [1,2,3,4,5]

sq = square_list(lst)

print(sq) # Output: [1, 4, 9, 16, 25]

Using list comprehensions

sq = [square(p) for p in lst]

print(sq) # Output: [1, 4, 9, 16, 25]

sq = [p*p for p in lst]

print(sq) # Output: [1, 4, 9, 16, 25]

List comprehension Computer Science

Objects and Lists 28(36)

List comprehensions

from math import sqrt

lst = list(range(1,6))

print(lst) # [1, 2, 3, 4, 5]

square = [n*n for n in lst]

print(square) # [1, 4, 9, 16, 25]

root = [round(sqrt(n),2) for n in lst]

print(root) # [1.0, 1.41, 1.73, 2.0, 2.24]

I [n*n for n in lst] is a list comprehension

I We apply the function n*n on all elements in list lst

I The result is a new list

I They are a compact version of iterating over all elements and applying the
function on each element.

List comprehension Computer Science

Objects and Lists 29(36)

Conditional list comprehensions

Integers dividable by 7 in range 1 to 50

div_7 = [n for n in range(1,51) if n%7==0]

print(div_7)

Square all integers, remove everything else

lst = ["ABC", 23.4, 7, True, 9, "xyz", 10]

only_ints = [pow(x,2) for x in lst if type(x) == int]

print(only_ints)

Output

[7, 14, 21, 28, 35, 42, 49]

[49, 81, 100]

I We can add an if clause to list comprehensions to filter the content

I Only elements fulfilling the if criteria are added to list

I type(x) == int ⇒ type is an entity that can be used in boolean expressions

List comprehension Computer Science

Objects and Lists 30(36)

Read multiple integers

Read multiple space separated integers from keyboard

text = input("Enter integers separated by one whitespace: ")

words = text.split()

ints = [int(w) for w in words]

print(f"Largest number is {max(ints)}, smallest is {min(ints)}")

Usage

Enter integers separated by one whitespace: 23 100 65 97 8 12

Largest number is 100, smallest is 8

1. We read input as a single string "23 100 65 97 8 12"

2. We split the string into a list of words
["23","100","65","97","8","12"]

3. We convert each word (e.g. "23") to an integer (e.g. 23)

4. We find smallest/largest element by applying min/max on the integer list

List comprehension Computer Science

Objects and Lists 31(36)

Two-dimensional lists (Matrix)

A two-dimensional list

a = [[1,2,3], [4,5,6], [7,8,9]] # Format is 3 x 3

print(a) # [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

print(a[0][2]) # 1st row, 3rd column ==> 3

print(a[1]) # Entire 2nd row ==> [4,5,6]

a[2][2] = 99 # Replace 9 with 99

print(a) # [[1, 2, 3], [4, 5, 6], [7, 8, 99]]

A 4x3 matrix with only 1 elements

b = [4*[1], 4*[1], 4*[1]]

print(b) # [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]

I A two-dimensional list is called a matrix

I It is a list containing other lists

I We access individual elements using a[0][2]

List comprehension Computer Science

Objects and Lists 32(36)

Simple list programming

Exercise: Write a program random_elements.py that:

I Creates a list containing 10 random floats in interval [-10,10]

I Converts the list to an integer list (correctly rounded off)

I Prints the smallest and largest elements in the integer list

List comprehension Computer Science

Objects and Lists 33(36)

random elements.py (Version 1)
import random

A list with ten random floats

floats = []

for i in range(10):

rnd = random.uniform(-10,10)

floats.append(rnd)

Correctly rounded off integers

ints = []

for f in floats:

ints.append(round(f))

Print largest and smallest

lrg = max(ints)

sml = min(ints)

print(f"\nLargest element is {lrg}, smallest is {sml}")

We use append() repeatedly to build our lists.
List comprehension Computer Science

Objects and Lists 34(36)

random elements.py (Version 2)

A much shorter version using list comprehensions

import random as rd

Ten random floats

floats = [rd.uniform(-10,10) for i in range(10)]

Rounded of integers

ints = [round(f) for f in floats]

Print largest and smallest

print(f"\nLargest element is {max(ints)}, smallest is {min(ints)}")

Which version is the best? Version 1 or 2?

List comprehension Computer Science

Objects and Lists 35(36)

Lists - Summary

I A list is a sequential data structure

I Sequential ⇒ all elements have a position, we have a first and last element

I Lists are mutable ⇒ we can manipulate (add, remove, swap) the list
elements

I Lists are very flexible ⇒ many different ways to create and manipulate
them

I List and strings are both sequences ⇒ many properties in common

I Lists are great ⇒ we use them a lot ⇒ get familiar with them!

List comprehension Computer Science

Objects and Lists 36(36)

	Classes and Object
	String objects and methods
	Fraction objects and methods
	Working with lists
	Slicing sequences
	List comprehension

