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The Python Test

The first Python Test takes place on Friday, October 23.

I A 2 hour test where you will handle 2-3 programming exercises

I It will be based on the Python material covered in Assignments 1 and 2.

I You must be able to handle all exercises to pass the test.

I Allowed help:

I Your own laptop and your favorite IDE (e.g. Visual Studio Code)
I Internet access to the Python Language Reference

(https://docs.python.org/3)
I You will not be given access to any lecture slides, your own assignment

solutions, or any other Python resource.

I You will be monitored the whole time.

I A 2nd and 3rd attempt will be given in November and December

I Registration deadline: October 16 (at 23.55).
Registration is mandatory and will start in a few days in Moodle.
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The Python Test - Distance vs Campus

I For students staying in Sweden
I The test will take place at Campus Växjö or at Campus Kalmar.
I We will not allow any student living in Sweden to take the test remotely.
I Exact time and place for the test will be presented later on.

I For students staying abroad
I Will be given an opportunity to take the Python Test remotely.
I The test will be monitored using Zoom. You will be asked to setup a

webcam (or mobile phone) in such a way that a video of you and your
computer is in clear view during the test.

I More instructions related to the distance version of the Python Test will be
presented later on.
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Today ...

I Objects and Classes

I String Objects

I Fraction Objects

I Lists (introduction)

I List Methods

I List Slicing

I If time permits
I List Comprehensions
I Multidimesional Lists

I Programming example

Reading instructions: Sections 9.1, 9.2, 9.4, 10.1-10.10, 10.13-10.15
(in textbook by Halterman)
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Classes and Objects

I Primitive types (e.g. int) have simple values (e.g. 237)
and operations (e.g. +, -, *, /).

I Entities like for example a bank account have more complex values
⇒ they require a mixture of multiple values to be correctly described

I A class is a definition of a more complex type

I Values of a class are called objects (or instances of a class)

class bank_account Object 1 Object 2 Object 3

Owner: Jonas Henrik Nils

No: 4758-8696 3246-9744 5432-2347

Balance: 34.345kr 8.456kr 97.654kr

I Classes (e.g. bank_account) have more complex values
(e.g. Jonas, 4758-8696, 34.345kr)

I The current values associated with an objects (e.g.
Jonas, 4758-8696, 34.345kr) is called the object state.
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Methods

I Types like int have simple values like 237 and operations like *

I Classes have complex values and a set of operators called methods

I The class string has for example a method called upper()

s = "Hello" # "Hello" is an object of type/class string

s = s.upper() # Apply method on string object "Hello"

print(s) # Output: HELLO

I A class defines properties of a given type of objects

I A class definition (often a separate file) is a bit of code defining:

I Attributes: The data we associate with the class
(for example owner, account number, and saldo for a back account)

I Methods: Operations we can do on an object
(for example update_balance on bank_account object)
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Method Calls

I Classes come with a specific set of operators called methods

I The methods of class A can only be applied on objects of class A

I Methods are called (applied) on variables referencing an object

s = "Hello" # "hello" is an object of class string

print( s.upper() ) # Output: HELLO

I General pattern for a method call

I In this lecture we look at a few common classes from the Python library

I We will not create our own classes
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The string class str

I All strings are objects of a predefined class str

print( type("Hello") ) # Output: <class 'str'>

I We create new string objects using double "Hi" or single quotes 'Hi'

I The string class str has many methods

s = "Hello"

print( s.upper() ) # Output: HELLO

print( s.count("l") ) # Output: 2

print( s.find("lo") ) # Output: 3

print( s.endswith("xxx") ) # Output: False

print( s.isalpha() ) # Output: True

I s.count("l") ⇒ number of "l" in string s

I s.find("lo") ⇒ first position of "lo" in string s

I s.endswith("xxx") ⇒ True if string s ends with "xxx"

I s.isalpha() ⇒ True if string s only contains letters
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The Python Standard Library

I The string class str comes with many methods

I It is hard to remember all details about all methods

I The official documentation for the string class is:

https://docs.python.org/3/library/

I The documentation is called the Python Standard Library

I The website documents all Python’s built-in types, classes and functions

I Hard reading since designed for professionals

I The docs.python.org/3/ documentation (and your IDE) will be your
only help at the Python Test ⇒ Get familiar with it!
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Methods vs Built-in Function
I Many built-in functions in Python can also be applied on strings

s = "abcABC"

print( len(s) ) # Output:6

print( min(s) ) # Output: A

print( max(s) ) # Output: c

print( min("aA1")) # Output: 1

print( min("aA 1{")). # Output: " " (whitespace)

print( max("aA 1{")) # Output: {

I min(s) ⇒ first character in alphabetical order

I max(s) ⇒ last character in alphabetical order

I alphabetical order: First digits, than upper case, then lower case,
other character are sorted based on their ASCII number (I think)

I Notice also how built-in functions are applied (e.g. len(s)) compared to
how methods are applied (e.g. s.upper())
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The class Fraction
The module fractions contains a class Fraction

from fractions import Fraction

f1 = Fraction(1,2) # Create Fraction object 1/2

f2 = Fraction(1,3)

fsum = f1+f2 # Store 1/2 + 1/3 in variable fsum

print(f1, type(f1)) # Output: 1/2 <class 'fractions.Fraction'>

print(fsum) # Output: 5/6

print(fsum.numerator) # Output: 5

print(fsum.denominator) # Output: 6

I We create a Fraction object 1/2 by calling a method Fraction(1,2)

Methods used to create new objects are called constructors

I Creating a new object of class A using a constructor named A, is the
standard approach

I fsum.numerator is not a method call, we are accessing the attribute
called numerator ⇒ the data values representing the object state
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Simple Fraction example

from fractions import Fraction

f = 0

for n in range(2,11):

f = f + Fraction(1,n) # 1/2 + 1/3 + 1/4 + ... + 1/10

print(f, float(f)) # Output: 4861/2520 1.928968253968254

I We introduce class Fraction just to show how a typical class is used

I Objects in a typical class are created using constructors

I String objects created using " " or ' ' is an exception

I The string object creation (and lists and tuples objects) is simplified since
their creation is very common
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Data Structures – Introduction

I We often need to handle large sets of data

I A data structure is a model for storing/handling such data sets

I Scenarios where data structures are needed

1. Students in a course
2. Measurements from an experiment
3. Queue to get an apartment at our campus
4. Telephone numbers in Stockholm

I Different scenarios require different data structure properties

I Data should be ordered
I Not the same element twice
I Important that look-up is fast
I In general: Important that operations X,Y,Z are fast

I Selecting data structure is a design decision ⇒ might affect performance,
modifiability, and program comprehension.

I Today: Lists, later on tuples, sets, and dictionaries
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Introducing lists

l = [1,2,3,4,5] # A list containing 1,2,3,4,5

print( l, type(l) ) # Output: [1, 2, 3, 4, 5] <class 'list'>

print( l[0], type(l[0]) ) # Output: 1 <class 'int'>

I A list like [1,2,3,4,5] is an object of class list

I We create lists using enclosing square brackets

I They represent a sequence of data, each value is called an element

I We can access individual element using square brackets like l[0]

I The first position is 0 ⇒ l[0] is the first element

I [1,2,3,4,5] is an integer list, but we can create lists of any type (or
with mixed types)

I list is a built-in type ⇒ no need for any import statement
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Manipulating lists

lst = [1,2,3,4,5]

lst[2] = 99 # Replace element at position 2

print(lst) # Output: [1, 2, 99, 4, 5]

# Iterate over all list indices

for i in range( len(lst) ):

print( lst[i], end=" ") # Output: 1 2 99 4 5

print()

# Iterate over all list elements

for n in lst:

print( n, end=" ") # Output: 1 2 99 4 5

print()

I We can replace a list element using lst[2] = 99

I Iteration using indices: for i in range( len(lst) ):

I Iteration using element directly: for n in lst:
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Building lists
Python supports several ways of building a list besides enumerating all elements

odd = [1,3,5]

even = [2,4,6]

zeros = 3*[0] # List multiplication

lst = odd + even + zeros # List concatenation

print(lst) # Output: [1, 3, 5, 2, 4, 6, 0, 0, 0]

lst += [10]

print(lst) # Output: [1, 3, 5, 2, 4, 6, 0, 0, 0, 10]

for i in range(100,141,10):

odd += [i]

print(odd) # [1, 3, 5, 100, 110, 120, 130, 140]

I Hence, we can construct new lists by adding two (or more) lists

I Very much like string concatenation and string multiplication. You will see
that strings and lists have a lot of properties in common.
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Example with list methods

The list class comes with several methods

animals = ['dog', 'cat', 'rabbit', 'wolf']

animals.append('tiger') # Add 'tiger' at the end of the list

print(animals) # ['dog', 'cat', 'rabbit', 'wolf', 'tiger']

animals.insert(0,'fox') # Insert 'fox' at position 0

print(animals) # ['fox', 'dog', 'cat', 'rabbit', 'wolf', 'tiger']

animals.remove('rabbit') # Remove first instance of 'rabbit'

print(animals) # ['fox', 'dog', 'cat', 'wolf', 'tiger']

animals.pop(1). # Remove element at position 1

print(animals) # ['fox', 'cat', 'wolf', 'tiger']

animals.sort() # Sort alphabetically

print(animals) # ['cat', 'fox', 'tiger', 'wolf']

All these methods manipulates (changes) the list content.
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More list methods

List methods in addition to append, insert, remove, pop, and sort

I count(): Returns the number of elements in the list

I index(): Returns the position where n first occurs

I reverse(): Reverses the order of the elements in the list

I copy(): Returns a copy of the list (a new list)

I clear(): Removes all elements from the list

I extend( list 2): Appends list2 to this list
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Example starting with an empty list

from random import randint

numbers = [] # We start with an empty list

for i in range(10):

rn = randint(1,100)

numbers.append( rn ) # Append one element at the time

print( numbers ) # [26, 90, 77, 82, 30, 48, 100, 85, 55, 88]

numbers.reverse() # Reverse order of element

print( numbers ) # [88, 55, 85, 100, 48, 30, 82, 77, 90, 26]

numbers.sort() # Sort in ascending order

print( numbers ) # [26, 30, 48, 55, 77, 82, 85, 88, 90, 100]

numbers.sort(reverse = True) # Sort in descending order

print( numbers ) # [100, 90, 88, 85, 82, 77, 55, 48, 30, 26]

I We start with an empty list (numbers = []) and add new random numbers one
at the time (numbers.append( rn ))

I By overriding default reverse = True in sort we change the sorting order
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A 10 minute break?
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Sequences
Strings and lists are both sequences and have a lot in common

s = "abcdef"

print( len(s) ) # 5

print( max(s) ) # e

print( min(s) ) # a

print( s[3]) # d

print( s[1:3]) # bc

for c in s:

print(c, end=" ") # a b c d e

print()

a = [1,2,3,4,5,6]

print( len(a) ) # 5

print( max(a) ) # 5

print( min(a) ) # 1

print( a[3]) # 4

print( a[1:3]) # [2, 3]

for n in a:

print(n, end=" ") # 1 2 3 4 5

print()

I Something that works for strings often works for list.

I However, certain things doesn’t make sense in both cases, for example
I split() doesn’t make sense for a list
I sum() doesn’t make sense for a string

I String object are immutable ⇒ can’t be modified once created

I List objects are mutable ⇒ can be modified after creation

Slicing sequences Computer Science

Objects and Lists 21(36)



Slicing sequences

Accessing certain parts using slicing works for all sequences

I Accessing certain parts using slicing works for all sequences

I Similar to range a slice looks like [start: stop: step]

I ... where all of them has certain default values

I Default values: start = 0, stop = len(...)+1, step = 1

I Remember that stop is not included when used

I Example: Various slices for list a = [0,1,2,3,4,5,6,7,8,9]

a[2:5] ==> [2, 3, 4]

a[2:9:2] ==> [2, 4, 6, 8]

a[6:2:-1] ==> [6, 5, 4, 3]

a[:6:] ==> [0, 1, 2, 3, 4, 5] (Uses default for start and step)

a[5::] ==> [5, 6, 7, 8, 9] (Uses default for stop and step

a[::] ==> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] (All default ==> list copy)

a[::-1] ==> [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] (Reverse copy)

I Remember that it also works for strings

I a[::-1] looks rather cryptic but is frequently used to reverse sequences
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Example: Reversing strings
Two variants to reverse a string

def reverse(s):

rev = ""

for c in s: # Add characters in reverse order

rev = c + rev

return rev

# Program starts

s = "Python"

rev1 = reverse(s) # Call function reverse(s)

print(rev1) # Output: nohtyP

rev2 = s[::-1] # Slicing

print(rev2) # Output: nohtyP

I Version 1: We build a new string by adding the characters in reverse order

I Version 2: We apply the slice s[::-1] ⇒ the entire string (start = 0,
stop = len(s)+1) in reverse order (step = -1)
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Search using keyword in

def contains(s,x): # True iff string s contains character x

for c in s:

if c == x:

return True

return False

# Program starts

s = "Python"

c = 'y'

if contains(s,c):

print(s, "contains", c) # Output: Python contains y

if c in s: # Search for char c in string s

print(s, "contains", c) # Output: Python contains y

a = [1,2,3,4,5]

n = 3

if n in a: # Search for number n in list a

print(a, "contains", n) # Output: [1, 2, 3, 4, 5] contains 3

Hence, the keyword in can also be used to search for elements in a sequence
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Convert ranges and strings to lists

The function list() can convert strings and ranges to lists

a = list("Hello")

print( a, type(a) ) # Output: ['H', 'e', 'l', 'l', 'o'] <class 'list'>

b = list( range(1,6) )

print( b, type(b) ) # Output: [1, 2, 3, 4, 5] <class 'list'>

I list() is a conversion function just like int(), float(), str(), and bool()

I list(x) tries to convert x into a list

I list(...) works for strings and ranges and a few other constructs
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List Element Removal
Previously, using list class methods

animals = ['dog', 'cat', 'rabbit', 'wolf']

animals.remove('rabbit') # Remove first instance of 'rabbit'

print(animals) # ['dog', 'cat', 'wolf']

animals.pop(1). # Remove element at position 1

print(animals) # ['dog', 'wolf']

Using keyword del:

lst = list( range(10) )

print(lst) # [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

del lst[1] # Delete element at position 1

print(lst) # [0, 2, 3, 4, 5, 6, 7, 8, 9]

del lst[3:6] # Delete positons 3 to 5

print(lst) # [0, 2, 3, 7, 8, 9]

I The keyword del can be used to delete elements or slices from a list

I It can also be used to remove elements from other types of data structures
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Splitting strings using split()

s = input("Enter a few whitespace separated words: ")

words = s.split()

print(words)

s = input("Enter a few comma-separated words: ").split(",")

print(words)

Usage

Enter a few whitespace separated words: Do Re Mi Fa So La

['Do', 'Re', 'Mi', 'Fa', 'So', 'La']

Enter a few comma-separated words: Do,Re,Mi,Fa,So,La

['Do', 'Re', 'Mi', 'Fa', 'So', 'La']

I We can split a string into a list of words using the string method split()

I split() uses by default whitespace (" ") to separate words, ...

I ... but can be configured to use other strings (e.g. split(","))
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Applying functions to lists
Three variants for applying function f (x) = x2 to all elements of a list

def square_list(a):

sq = []

for n in a:

sq.append( n*n )

return sq

def square(x): return x*x

# Program starts

lst = [1,2,3,4,5]

sq = square_list(lst)

print(sq) # Output: [1, 4, 9, 16, 25]

# Using list comprehensions

sq = [square(p) for p in lst]

print(sq) # Output: [1, 4, 9, 16, 25]

sq = [p*p for p in lst]

print(sq) # Output: [1, 4, 9, 16, 25]
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List comprehensions

from math import sqrt

lst = list( range(1,6) )

print(lst) # [1, 2, 3, 4, 5]

square = [n*n for n in lst]

print(square) # [1, 4, 9, 16, 25]

root = [round(sqrt(n),2) for n in lst]

print(root) # [1.0, 1.41, 1.73, 2.0, 2.24]

I [n*n for n in lst] is a list comprehension

I We apply the function n*n on all elements in list lst

I The result is a new list

I They are a compact version of iterating over all elements and applying the
function on each element.
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Conditional list comprehensions

# Integers dividable by 7 in range 1 to 50

div_7 = [n for n in range(1,51) if n%7==0]

print(div_7)

# Square all integers, remove everything else

lst = ["ABC", 23.4, 7, True, 9, "xyz", 10]

only_ints = [pow(x,2) for x in lst if type(x) == int]

print(only_ints)

Output

[7, 14, 21, 28, 35, 42, 49]

[49, 81, 100]

I We can add an if clause to list comprehensions to filter the content

I Only elements fulfilling the if criteria are added to list

I type(x) == int ⇒ type is an entity that can be used in boolean expressions
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Read multiple integers

# Read multiple space separated integers from keyboard

text = input("Enter integers separated by one whitespace: ")

words = text.split()

ints = [int(w) for w in words]

print(f"Largest number is {max(ints)}, smallest is {min(ints)}")

Usage

Enter integers separated by one whitespace: 23 100 65 97 8 12

Largest number is 100, smallest is 8

1. We read input as a single string "23 100 65 97 8 12"

2. We split the string into a list of words
["23","100","65","97","8","12"]

3. We convert each word (e.g. "23") to an integer (e.g. 23)

4. We find smallest/largest element by applying min/max on the integer list
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Two-dimensional lists (Matrix)

# A two-dimensional list

a = [ [1,2,3], [4,5,6], [7,8,9] ] # Format is 3 x 3

print(a) # [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

print(a[0][2]) # 1st row, 3rd column ==> 3

print(a[1]) # Entire 2nd row ==> [4,5,6]

a[2][2] = 99 # Replace 9 with 99

print(a) # [[1, 2, 3], [4, 5, 6], [7, 8, 99]]

# A 4x3 matrix with only 1 elements

b = [4*[1], 4*[1], 4*[1]]

print(b) # [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]

I A two-dimensional list is called a matrix

I It is a list containing other lists

I We access individual elements using a[0][2]
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Simple list programming

Exercise: Write a program random_elements.py that:

I Creates a list containing 10 random floats in interval [-10,10]

I Converts the list to an integer list (correctly rounded off)

I Prints the smallest and largest elements in the integer list
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random elements.py (Version 1)
import random

# A list with ten random floats

floats = []

for i in range(10):

rnd = random.uniform(-10,10)

floats.append(rnd)

# Correctly rounded off integers

ints = []

for f in floats:

ints.append( round(f) )

# Print largest and smallest

lrg = max(ints)

sml = min(ints)

print(f"\nLargest element is {lrg}, smallest is {sml}")

We use append() repeatedly to build our lists.
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random elements.py (Version 2)

A much shorter version using list comprehensions

import random as rd

# Ten random floats

floats = [rd.uniform(-10,10) for i in range(10)]

# Rounded of integers

ints = [round(f) for f in floats]

# Print largest and smallest

print(f"\nLargest element is {max(ints)}, smallest is {min(ints)}")

Which version is the best? Version 1 or 2?
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Lists - Summary

I A list is a sequential data structure

I Sequential ⇒ all elements have a position, we have a first and last element

I Lists are mutable ⇒ we can manipulate (add, remove, swap) the list
elements

I Lists are very flexible ⇒ many different ways to create and manipulate
them

I List and strings are both sequences ⇒ many properties in common

I Lists are great ⇒ we use them a lot ⇒ get familiar with them!
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