Linnaeus University%gj

Objects and Lists
1DV501 - Introduction to Programming

Jonas Lundberg, office B3024

Jonas.Lundberg@lnu.se

The slides are available in Moodle

September 19, 2020

Computer Science

Objects and Lists 1(36)

Linnaeus University?:'is"*
The Python Test

The first Python Test takes place on Friday, October 23.

> A 2 hour test where you will handle 2-3 programming exercises

> It will be based on the Python material covered in Assignments 1 and 2.
» You must be able to handle all exercises to pass the test.
>

Allowed help:

» Your own laptop and your favorite IDE (e.g. Visual Studio Code)

> Internet access to the Python Language Reference
(https://docs.python.org/3)

» You will not be given access to any lecture slides, your own assignment
solutions, or any other Python resource.

> You will be monitored the whole time.
> A 2nd and 3rd attempt will be given in November and December

> Registration deadline: October 16 (at 23.55).
Registration is mandatory and will start in a few days in Moodle.

Computer Science

Objects and Lists 2(36)

Linnaeus University?:'ﬁ"*

The Python Test - Distance vs Campus

> For students staying in Sweden

» The test will take place at Campus Vaxjo or at Campus Kalmar.
» We will not allow any student living in Sweden to take the test remotely.
» Exact time and place for the test will be presented later on.

» For students staying abroad
>

Will be given an opportunity to take the Python Test remotely.
| 2

The test will be monitored using Zoom. You will be asked to setup a
webcam (or mobile phone) in such a way that a video of you and your
computer is in clear view during the test.

More instructions related to the distance version of the Python Test will be
presented later on.

Computer Science

Objects and Lists 3(36)

Linnaeus University?;f"*

Today ...

Objects and Classes
String Objects
Fraction Objects
Lists (introduction)
List Methods

List Slicing

vVvyVvVvyvVvyvVvyyy

If time permits

» List Comprehensions
» Multidimesional Lists

> Programming example

Reading instructions: Sections 9.1, 9.2, 9.4, 10.1-10.10, 10.13-10.15
(in textbook by Halterman)

Computer Science

Objects and Lists 4(36)

Linnaeus University?:'ﬁ"*

Classes and Objects

> Primitive types (e.g. int) have simple values (e.g. 237)
and operations (e.g. +, -, *, /).

> Entities like for example a bank account have more complex values
= they require a mixture of multiple values to be correctly described

> A class is a definition of a more complex type

> Values of a class are called objects (or instances of a class)

class bank_account Object 1 Object 2 Object 3
Owner: Jonas Henrik Nils
No: 4758-8696 3246-9744 5432-2347
Balance: 34.345kr 8.456kr 97.654kr

> Classes (e.g. bank_account) have more complex values
(e.g. Jonas, 4758-8696, 34.345kr)

> The current values associated with an objects (e.g.
Jonas, 4758-8696, 34.345kr) is called the object state.

Classes and Object Computer Science

Objects and Lists 5(36)

Linnaeus University?:f"*

Methods

» Types like int have simple values like 237 and operations like *
> Classes have complex values and a set of operators called methods
» The class string has for example a method called upper ()
s = "Hello" # "Hello" is an object of type/class string
s = s.upper() # Apply method on string object "Hello"
print(s) # Output: HELLO
> A class defines properties of a given type of objects
> A class definition (often a separate file) is a bit of code defining:
> Attributes: The data we associate with the class
(for example owner, account number, and saldo for a back account)
» Methods: Operations we can do on an object
(for example update_balance on bank_account object)
Classes and Object Computer Science

Objects and Lists 6(36)

Linnaeus University?:f"*

Method Calls

» Classes come with a specific set of operators called methods
» The methods of class A can only be applied on objects of class A
> Methods are called (applied) on variables referencing an object

s = "Hello" # "hello" 2s an object of class string

print(s.upper()) # Output: HELLO
» General pattern for a method call

object method name (parameter list)
[]
» In this lecture we look at a few common classes from the Python library
> We will not create our own classes
Classes and Object Computer Science

Objects and Lists 7(36)

The string class str

> All strings are objects of a predefined class str

print(type("Hello"))

Linnaeus Universityﬁ'p*

Output: <class 'str'>

> We create new string objects using double "Hi" or single quotes 'Hi'

> The string class str has many methods

[N
>
| 4

v

Objects and Lists

s = "Hello"

print (s.upper())

print(s.count("1"))
print(s.find("1lo"))
print(s.endswith("xxx"))
print(s.isalpha())

Output:
Output:
Output:
Output:
Output:

s.count ("1") = number of "1" in string s

HELLO

False
True

s.find("1o") = first position of "1o" in string s

s.endswith("xxx") = True if string s ends with "xxx"

s.isalpha() = True if string s only contains letters

String objects and methods

Computer Science

8(36)

Linnaeus University?:'r:"*

The Python Standard Library

> The string class str comes with many methods

> It is hard to remember all details about all methods

The official documentation for the string class is:
https://docs.python.org/3/library/

The documentation is called the Python Standard Library

The website documents all Python's built-in types, classes and functions

Hard reading since designed for professionals

v vyYyywy

The docs.python.org/3/ documentation (and your IDE) will be your
only help at the Python Test = Get familiar with it!

String objects and methods Computer Science

Objects and Lists 9(36)

Linnaeus University?:f"*

Methods vs Built-in Function

» Many built-in functions in Python can also be applied on strings

s = "abcABC"

print(len(s)) # Output:6

print(min(s)) # Output: A

print(max(s)) # Output: c

print(min("aA1")) # Output: 1

print(min("aA 1{")). # Output: " " (whitespace)
print(max("aA 1{")) # Output: {

» min(s) = first character in alphabetical order
max (s) = last character in alphabetical order

> alphabetical order: First digits, than upper case, then lower case,
other character are sorted based on their ASCII number (I think)

> Notice also how built-in functions are applied (e.g. len(s)) compared to
how methods are applied (e.g. s.upper())

String objects and methods Computer Science

Objects and Lists 10(36)

Linnaeus University?:f"*

The class Fraction

The module fractions contains a class Fraction

from fractions import Fraction

f1 = Fraction(1,2) # Create Fraction object 1/2

f2 = Fraction(1,3)

fsum = f1+£2 # Store 1/2 + 1/3 in wvariable fsum
print(f1, type(£f1)) # Output: 1/2 <class 'fractions.Fraction'>
print (fsum) # Output: 5/6

print (fsum.numerator) # Output: 5

print (fsum.denominator) # Output: 6
> We create a Fraction object 1/2 by calling a method Fraction(1,2)
Methods used to create new objects are called constructors

> Creating a new object of class A using a constructor named A, is the
standard approach

> fsum.numerator is not a method call, we are accessing the attribute
called numerator = the data values representing the object state

Fraction objects and methods Computer Science

Objects and Lists 11(36)

Linnaeus University?:f"*

Simple Fraction example

from fractions import Fraction

£f=0
for n in range(2,11):

f = £ + Fraction(1,n) # 1/2 + 1/3 + 1/4 + ... + 1/10
print(f, float(f)) # Output: 4861/2520 1.92896825396825/

» We introduce class Fraction just to show how a typical class is used
» Objects in a typical class are created using constructors

> String objects created using " " or ' ' is an exception
>

The string object creation (and lists and tuples objects) is simplified since
their creation is very common

Fraction objects and methods Computer Science

Objects and Lists 12(36)

Linnaeus University?:'ﬁ"*

Data Structures — Introduction

» We often need to handle large sets of data

>

Working with lists
Objects and Lists

A data structure is a model for storing/handling such data sets
Scenarios where data structures are needed

1. Students in a course

2. Measurements from an experiment

3. Queue to get an apartment at our campus
4. Telephone numbers in Stockholm

Different scenarios require different data structure properties

» Data should be ordered

> Not the same element twice

» |mportant that look-up is fast

» In general: Important that operations X,Y,Z are fast

Selecting data structure is a design decision = might affect performance,
modifiability, and program comprehension.

Today: Lists, later on tuples, sets, and dictionaries

Computer Science

13(36)

Linnaeus University?:f"*

Introducing lists

1 =

[1,2,3,4,5] # A list containing 1,2,3,4,5

print(1, type(1l)) # Output: [1, 2, 3, 4, 5] <class 'list'>
print(1[0], type(1[0])) # Output: 1 <class 'int'>

>
>
>
>
>
>

Working with lists
Objects and Lists

A list like [1,2,3,4,5] is an object of class list

We create lists using enclosing square brackets

They represent a sequence of data, each value is called an element
We can access individual element using square brackets like 1[0]
The first position is 0 = 1[0] is the first element

[1,2,3,4,5] is an integer list, but we can create lists of any type (or
with mixed types)

list is a built-in type = no need for any import statement

Computer Science

14(36)

Linnaeus Universityﬁ'j?*
Manipulating lists
1st = [1,2,3,4,5]

1st[2] = 99 # Replace element at position 2
print(lst) # Output: [1, 2, 99, 4, 5]

Iterate over all list indices
for i in range(len(lst)):

print(1lst[i], end=" ") # Output: 1 2 99 4 5
print ()

Iterate over all list elements
for n in 1st:

print(n, end=" ") # Output: 1 2 99 4 5
print)

» We can replace a list element using 1st[2] = 99
> |teration using indices: for i in range(len(lst)):
> [teration using element directly: for n in 1lst:

Working with lists Computer Science

Objects and Lists 15(36)

Linnaeus Universityﬁ'p*
Building lists
Python supports several ways of building a list besides enumerating all elements

odd = [1,3,5]
even = [2,4,6]

zeros = 3% [0] # List multiplication

1lst = odd + even + zeros # List concatenation

print(lst) # Output: [1, 3, 5, 2, 4, 6, 0, 0, 0]

1st += [10]

print(lst) # Output: [1, 3, 5, 2, 4, 6, 0, 0, 0, 10]

for i in range(100,141,10):
odd += [il
print(odd) # [1, 3, 5, 100, 110, 120, 130, 140]

> Hence, we can construct new lists by adding two (or more) lists
» Very much like string concatenation and string multiplication. You will see
that strings and lists have a lot of properties in common.

Working with lists Computer Science

Objects and Lists 16(36)

Linnaeus Universityﬁ'j?*

Example with list methods

The list class comes with several methods
animals = ['dog', 'cat', 'rabbit', 'wolf']

animals.append('tiger') # Add 'tiger' at the end of the list
print (animals) # ['dog', 'cat', 'rabbit', 'wolf', 'tiger']

animals.insert(0, 'fox') # Insert 'fox' at position O
print(animals) # ['fox', 'dog', 'cat', 'rabbit', 'wolf', 'tiger']

animals.remove('rabbit') # Remove first instance of 'rabbit'

print (animals) # ['fox', 'dog', 'cat', 'wolf', 'tiger']
animals.pop(1). # Remove element at position 1

print (animals) # ['fox', 'cat', 'wolf', 'tiger']
animals.sort () # Sort alphabetically

print(animals) # ['cat', 'foz', 'tiger', 'wolf']

All these methods manipulates (changes) the list content.

Working with lists Computer Science

Objects and Lists 17(36)

Linnaeus University?:is"*

More list methods

List methods in addition to append, insert, remove, pop, and sort
count () : Returns the number of elements in the list

index () : Returns the position where n first occurs

reverse() : Reverses the order of the elements in the list

copy () : Returns a copy of the list (a new list)

clear () : Removes all elements from the list

vV v vy vVvyyvyy

extend(list 2): Appends list2 to this list

Working with lists Computer Science

Objects and Lists 18(36)

Linnaeus Universityﬁ'i?*

Example starting with an empty list

from random import randint

numbers = [] # We start with an empty list
for i in range(10):
rn = randint(1,100)

numbers. append(rn) # Append one element at the time
print (numbers) # [26, 90, 77, 82, 30, 48, 100, 85, 55, 88]
numbers.reverse() # Reverse order of element
print (numbers) # [88, 55, 85, 100, 48, 30, 82, 77, 90, 26]
numbers . sort () # Sort in ascending order
print(numbers) # [26, 30, 48, 55, 77, 82, 85, 88, 90, 100]

numbers.sort(reverse = True) # Sort in descending order
print(numbers) # [100, 90, 88, 85, 82, 77, b5, 48, 30, 26]

> We start with an empty list (numbers = []1) and add new random numbers one
at the time (numbers.append(rn))

> By overriding default reverse = True in sort we change the sorting order

Working with lists Computer Science

Objects and Lists 19(36)

Linnaeus Universityz'r;*

A 10 minute break?

Working with lists Computer Science

Objects and Lists 20(36)

Linnaeus Universityﬁf"*

Sequences
Strings and lists are both sequences and have a lot in common
s = "abcdef" a=1[1,2,3,4,5,6]
print(len(s)) #5 print(len(a)) #5
print (max(s)) # e print (max(a)) # 5
print(min(s)) # a print(min(a)) # 1
print(s[3]) #d print(a[3]) # 4
print(s[1:3]1) # be print (al1:3]1) # [2, 3]
for c in s: for n in a:

print(c, end=" ") #a b c d e print(n, end=" ") # 123 4 5
print () print ()

> Something that works for strings often works for list.

> However, certain things doesn't make sense in both cases, for example

» split() doesn’'t make sense for a list
» sum() doesn't make sense for a string

> String object are immutable = can't be modified once created
> List objects are mutable = can be modified after creation

Slicing sequences Computer Science

Objects and Lists 21(36)

Linnaeus University?;f"*

Slicing sequences

Accessing certain parts using slicing works for all sequences

>

Accessing certain parts using slicing works for all sequences

> Similar to range a slice looks like [start: stop: step]

vvyVvyy

>
>

Slicing sequences

Objects and Lists

. where all of them has certain default values

Default values: start = 0, stop = len(...)+1, step = 1

Remember that stop is not included when used

Example: Various slices for list a = [0,1,2,3,4,5,6,7,8,9]

a[2:5] ==> [2, 3, 4]

al[2:9:2] ==> [2, 4, 6, 8]

al[6:2:-1] ==> [6, 5, 4, 3]

al:6:] ==> [0, 1, 2, 3, 4, 5] (Uses default for start and step)
a[6::] ==> [5, 6, 7, 8, 9] (Uses default for stop and step
al::] ==> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] (All default ==> list copy)
al::-1] ==> [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] (Reverse copy)
Remember that it also works for strings

al::-1] looks rather cryptic but is frequently used to reverse sequences

Computer Science

22(36)

Linnaeus Universityﬁf"*

Example: Reversing strings
Two variants to reverse a string

def reverse(s):
rev = nn
for c in s: # Add characters in reverse order
rev = c + rev
return rev

Program starts

s = "Python"

revl = reverse(s) # Call function reverse(s)
print(revl) # Output: nohtyP

rev2 = s[::-1] # Slicing

print (rev2) # Output: nohtyP

> Version 1: We build a new string by adding the characters in reverse order
> Version 2: We apply the slice s[::-1] = the entire string (start = 0,

stop = len(s)+1) in reverse order (step = -1)

Slicing sequences Computer Science

Objects and Lists 23(36)

Linnaeus Universityﬁ'j?*

Search using keyword in

def contains(s,x): # True iff string s contains character
for ¢ in s:
if ¢ ==
return True
return False

Program starts
s = "Python"
'y
if contains(s,c):

print(s, "contains", c) # Output: Python contains y

c = !

if ¢ in s: # Search for char c in string s
print(s, "contains", c) # Output: Python contains y

a = [1,2,3,4,5]
n=3
if n in a: # Search for number n in list a
print(a, "contains", n) # Output: [1, 2, 3, 4, 5] contains 3

Hence, the keyword in can also be used to search for elements in a sequence

Slicing sequences Computer Science

Objects and Lists 24(36)

Linnaeus University?:f"*

Convert ranges and strings to lists

The function 1ist () can convert strings and ranges to lists

a = list("Hello")
print(a, type(a)) # Output: ['H', 'e', 'l', 'l', 'o'] <class 'list'>

b = list(range(1,6))
print(b, type(b)) # Output: [1, 2, 3, 4, 5] <class 'list'>

> 1list() is a conversion function just like int(), float(), str(), and bool()
> list(x) tries to convert x into a list

> 1list(...) works for strings and ranges and a few other constructs

Slicing sequences Computer Science

Objects and Lists 25(36)

Linnaeus Universityﬁ'j?*

List Element Removal

Previously, using list class methods
animals = ['dog', 'cat', 'rabbit', 'wolf']

animals.remove('rabbit') # Remove first instance of 'rabbit’

print(animals) # ['dog', 'cat', 'wolf']
animals.pop(1). # Remove element at position 1
print (animals) # ['dog', 'wolf']

Using keyword del:

1st = list(range(10))

print (1st) # 100, 1, 2, 3, 4, 5, 6, 7, 8, 9]
del 1st[1] # Delete element at position 1
print (1st) # [0, 2, 3, 4,5, 6, 7, 8 9]

del 1st[3:6] # Delete positons 3 to 5
print(lst) # [0, 2, 3, 7, 8 9]

> The keyword del can be used to delete elements or slices from a list

> It can also be used to remove elements from other types of data structures

Slicing sequences Computer Science

Objects and Lists 26(36)

Linnaeus University?:f"*

Splitting strings using split()

s = input("Enter a few whitespace separated words: ")
words = s.split()
print (words)

s = input("Enter a few comma-separated words: ").split(",")
print (words)

Usage

Enter a few whitespace separated words: Do Re Mi Fa So La

[lDOI s 'Re’ s M1’ s 'Fa! s 'So! s lLal]

Enter a few comma-separated words: Do,Re,Mi,Fa,So,La

['DO' s 'Re’ s M1’ s 'Fa! s 'So! s lLal]
> We can split a string into a list of words using the string method split()
> split() uses by default whitespace (" ") to separate words, ...

> ... but can be configured to use other strings (e.g. split(","))

Slicing sequences Computer Science

Objects and Lists 27(36)

Linnaeus Universityﬁf"*

Applying functions to lists

Three variants for applying function f(x) = x? to all elements of a list

def square_list(a):
sq = [1
for n in a:
sq.append(n#*n)
return sq

def square(x): return x*x

Program starts

1st = [1,2,3,4,5]

sq = square_list(1lst)

print(sq) # Output: [1, 4, 9, 16, 25]

Using list comprehensions
sq = [square(p) for p in 1lst]
print(sq) # Output: [1, 4, 9, 16, 25]

sq = [p*p for p in 1lst]
print(sq) # Output: [1, 4, 9, 16, 25]

List comprehension Computer Science

Objects and Lists 28(36)

Linnaeus University?:f"*

List comprehensions

from math import sqrt

1st = list(range(1,6))
print(lst) # [1, 2, 3, 4, 5]

square = [n*n for n in 1lst]
print(square) # [1, 4, 9, 16, 25]

root = [round(sqrt(n),2) for n in 1st]
print (root) # [1.0, 1.41, 1.73, 2.0, 2.24]

[n*n for n in 1st] is a list comprehension
We apply the function n*n on all elements in list 1st

The result is a new list

vvyVvyy

They are a compact version of iterating over all elements and applying the
function on each element.

List comprehension Computer Science

Objects and Lists 29(36)

Linnaeus Universityﬁf"*

Conditional list comprehensions

Integers dividable by 7 in range 1 to 50
div_7 = [n for n in range(1,51) if nJ,7==0]
print(div_7)

Square all integers, remove everything else

1st = ["ABC", 23.4, 7, True, 9, "xyz", 10]
only_ints = [pow(x,2) for x in 1lst if type(x) == int]
print (only_ints)

Output

[7, 14, 21, 28, 35, 42, 49]
[49, 81, 100]

» We can add an if clause to list comprehensions to filter the content
> Only elements fulfilling the if criteria are added to list

> type(x) == int = type is an entity that can be used in boolean expressions

List comprehension Computer Science

Objects and Lists 30(36)

Linnaeus Universityﬁf"*

Read multiple integers

Read multiple space separated integers from keyboard

text = input("Enter integers separated by one whitespace: ")

words = text.split()
ints = [int(w) for w in words]

print (f"Largest number is {max(ints)}, smallest is {min(ints)}")

Usage

Enter integers separated by one whitespace: 23 100 65 97 8 12
Largest number is 100, smallest is 8

1. We read input as a single string "23 100 65 97 8 12"

2. We split the string into a list of words
["23","100","65","97","8" ,"12"]

3. We convert each word (e.g. "23") to an integer (e.g. 23)

4. We find smallest/largest element by applying min/max on the integer list

List comprehension Computer Science
Objects and Lists 31(36)

Linnaeus Universityﬁ'j?*

Two-dimensional lists (Matrix)

A two-dimensional list
a=1[1[1,2,3]1, [4,5,6], [7,8,9]] # Format is 3 = 3

print(a) # [[1, 2, 3], [4, 5, 6], [7, 8, 91]
print(al0] [2]) # 1st row, 3rd column ==> 3
print(ali]) # Entire 2nd row ==> [/,5,6]

al2][2] = 99 # Replace 9 with 99
print(a) # [[1, 2, 3], [4, 5, 6], [7, 8, 99]]

A 4x3 matriz with only 1 elements

b = [4x[1], 4x[1], 4*[1]]

print (b) # [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]
» A two-dimensional list is called a matrix
> It is a list containing other lists

» We access individual elements using a[0] [2]

Computer Science
32(36)

List comprehension

Objects and Lists

Linnaeus University?:'r:"*

Simple list programming

Exercise: Write a program random_elements.py that:
> Creates a list containing 10 random floats in interval [-10,10]
> Converts the list to an integer list (correctly rounded off)

» Prints the smallest and largest elements in the integer list

List comprehension Computer Science

Objects and Lists 33(36)

Linnaeus Universityﬁ'p*

random elements.py (Version 1)

import random

A list with ten random floats
floats = []
for i in range(10):
rnd = random.uniform(-10,10)
floats.append (rnd)

Correctly rounded off integers
ints = []
for £ in floats:

ints.append(round(f))

Print largest and smallest

lrg = max(ints)

sml = min(ints)

print(£"\nLargest element is {lrg}, smallest is {sml}")

We use append() repeatedly to build our lists.
List comprehension Computer Science

Objects and Lists 34(36)

Linnaeus Universityﬁ'i?*

random elements.py (Version 2)

A much shorter version using list comprehensions

import random as rd

Ten random floats
floats = [rd.uniform(-10,10) for i in range(10)]

Rounded of integers
ints = [round(f) for f in floats]

Print largest and smallest
print (f"\nLargest element is {max(ints)}, smallest is {min(ints)}")

Which version is the best? Version 1 or 27

Computer Science

35(36)

List comprehension

Objects and Lists

Linnaeus University?:'ﬁ"*

Lists - Summary

v

A list is a sequential data structure
Sequential = all elements have a position, we have a first and last element

> Lists are mutable = we can manipulate (add, remove, swap) the list
elements

> Lists are very flexible = many different ways to create and manipulate
them

> List and strings are both sequences = many properties in common

> Lists are great = we use them a lot = get familiar with them!

List comprehension Computer Science

Objects and Lists 36(36)

	Classes and Object
	String objects and methods
	Fraction objects and methods
	Working with lists
	Slicing sequences
	List comprehension

