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The Python Test

The first Python Test takes place on Friday, October 23.

> A 2 hour test where you will handle 2-3 programming exercises

> It will be based on the Python material covered in Assignments 1 and 2.
» You must be able to handle all exercises to pass the test.
>

Allowed help:

» Your own laptop and your favorite IDE (e.g. Visual Studio Code)

> Internet access to the Python Language Reference
(https://docs.python.org/3)

» You will not be given access to any lecture slides, your own assignment
solutions, or any other Python resource.

> You will be monitored the whole time.
> A 2nd and 3rd attempt will be given in November and December

> Registration deadline: October 16 (at 23.55).
Registration is mandatory and will start in a few days in Moodle.
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The Python Test - Distance vs Campus

> For students staying in Sweden

» The test will take place at Campus Vaxjo or at Campus Kalmar.
» We will not allow any student living in Sweden to take the test remotely.
» Exact time and place for the test will be presented later on.

» For students staying abroad
>

Will be given an opportunity to take the Python Test remotely.
| 2

The test will be monitored using Zoom. You will be asked to setup a
webcam (or mobile phone) in such a way that a video of you and your
computer is in clear view during the test.

More instructions related to the distance version of the Python Test will be
presented later on.
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Today ...

Objects and Classes
String Objects
Fraction Objects
Lists (introduction)
List Methods

List Slicing

vVvyVvVvyvVvyvVvyyy

If time permits

» List Comprehensions
» Multidimesional Lists

> Programming example

Reading instructions: Sections 9.1, 9.2, 9.4, 10.1-10.10, 10.13-10.15
(in textbook by Halterman)
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Classes and Objects

> Primitive types (e.g. int) have simple values (e.g. 237)
and operations (e.g. +, -, *, /).

> Entities like for example a bank account have more complex values
= they require a mixture of multiple values to be correctly described

> A class is a definition of a more complex type

> Values of a class are called objects (or instances of a class)

class bank_account Object 1 Object 2 Object 3
Owner: Jonas Henrik Nils
No: 4758-8696 3246-9744 5432-2347
Balance: 34.345kr 8.456kr 97.654kr

> Classes (e.g. bank_account) have more complex values
(e.g. Jonas, 4758-8696, 34.345kr)

> The current values associated with an objects (e.g.
Jonas, 4758-8696, 34.345kr) is called the object state.

Classes and Object Computer Science
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Methods

» Types like int have simple values like 237 and operations like *
> Classes have complex values and a set of operators called methods
» The class string has for example a method called upper ()
s = "Hello" # "Hello" is an object of type/class string
s = s.upper() # Apply method on string object "Hello"
print(s) # Output: HELLO
> A class defines properties of a given type of objects
> A class definition (often a separate file) is a bit of code defining:
> Attributes: The data we associate with the class
(for example owner, account number, and saldo for a back account)
» Methods: Operations we can do on an object
(for example update_balance on bank_account object)
Classes and Object Computer Science
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Method Calls

» Classes come with a specific set of operators called methods
» The methods of class A can only be applied on objects of class A
> Methods are called (applied) on variables referencing an object

s = "Hello" # "hello" 2s an object of class string

print( s.upper() ) # Output: HELLO
» General pattern for a method call

object method name ( parameter list )
[ ]
» In this lecture we look at a few common classes from the Python library
> We will not create our own classes
Classes and Object Computer Science
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The string class str

> All strings are objects of a predefined class str

print( type("Hello") )

Linnaeus Universityﬁ'p*

# Output: <class 'str'>

> We create new string objects using double "Hi" or single quotes 'Hi'

> The string class str has many methods

[N
>
| 4

v

Objects and Lists

s = "Hello"

print ( s.upper() )

print( s.count("1") )
print( s.find("1lo") )
print( s.endswith("xxx") )
print( s.isalpha() )

# Output:
# Output:
# Output:
# Output:
# Output:

s.count ("1") = number of "1" in string s

HELLO

False
True

s.find("1o") = first position of "1o" in string s

s.endswith("xxx") = True if string s ends with "xxx"

s.isalpha() = True if string s only contains letters

String objects and methods
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The Python Standard Library

> The string class str comes with many methods

> It is hard to remember all details about all methods

The official documentation for the string class is:
https://docs.python.org/3/library/

The documentation is called the Python Standard Library

The website documents all Python's built-in types, classes and functions

Hard reading since designed for professionals

v vyYyywy

The docs.python.org/3/ documentation (and your IDE) will be your
only help at the Python Test = Get familiar with it!

String objects and methods Computer Science
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Methods vs Built-in Function

» Many built-in functions in Python can also be applied on strings

s = "abcABC"

print( len(s) ) # Output:6

print( min(s) ) # Output: A

print( max(s) ) # Output: c

print( min("aA1")) # Output: 1

print( min("aA 1{")). # Output: " "  (whitespace)
print( max("aA 1{")) # Output: {

» min(s) = first character in alphabetical order
max (s) = last character in alphabetical order

> alphabetical order: First digits, than upper case, then lower case,
other character are sorted based on their ASCII number (I think)

> Notice also how built-in functions are applied (e.g. len(s)) compared to
how methods are applied (e.g. s.upper())

String objects and methods Computer Science
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The class Fraction

The module fractions contains a class Fraction

from fractions import Fraction

f1 = Fraction(1,2) # Create Fraction object 1/2

f2 = Fraction(1,3)

fsum = f1+£2 # Store 1/2 + 1/3 in wvariable fsum
print(f1, type(£f1)) # Output: 1/2 <class 'fractions.Fraction'>
print (fsum) # Output: 5/6

print (fsum.numerator) # Output: 5

print (fsum.denominator) # Output: 6
> We create a Fraction object 1/2 by calling a method Fraction(1,2)
Methods used to create new objects are called constructors

> Creating a new object of class A using a constructor named A, is the
standard approach

> fsum.numerator is not a method call, we are accessing the attribute
called numerator = the data values representing the object state

Fraction objects and methods Computer Science
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Simple Fraction example

from fractions import Fraction

£f=0
for n in range(2,11):

f = £ + Fraction(1,n) # 1/2 + 1/3 + 1/4 + ... + 1/10
print(f, float(f)) # Output: 4861/2520 1.92896825396825/

» We introduce class Fraction just to show how a typical class is used
» Objects in a typical class are created using constructors

> String objects created using " " or ' ' is an exception
>

The string object creation (and lists and tuples objects) is simplified since
their creation is very common

Fraction objects and methods Computer Science
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Data Structures — Introduction

» We often need to handle large sets of data

>

Working with lists
Objects and Lists

A data structure is a model for storing/handling such data sets
Scenarios where data structures are needed

1. Students in a course

2. Measurements from an experiment

3. Queue to get an apartment at our campus
4. Telephone numbers in Stockholm

Different scenarios require different data structure properties

» Data should be ordered

> Not the same element twice

» |mportant that look-up is fast

» In general: Important that operations X,Y,Z are fast

Selecting data structure is a design decision = might affect performance,
modifiability, and program comprehension.

Today: Lists, later on tuples, sets, and dictionaries

Computer Science
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Introducing lists

1 =

[1,2,3,4,5] # A list containing 1,2,3,4,5

print( 1, type(1l) ) # Output: [1, 2, 3, 4, 5] <class 'list'>
print( 1[0], type(1[0]) )  # Output: 1 <class 'int'>

>
>
>
>
>
>

Working with lists
Objects and Lists

A list like [1,2,3,4,5] is an object of class list

We create lists using enclosing square brackets

They represent a sequence of data, each value is called an element
We can access individual element using square brackets like 1[0]
The first position is 0 = 1[0] is the first element

[1,2,3,4,5] is an integer list, but we can create lists of any type (or
with mixed types)

list is a built-in type = no need for any import statement

Computer Science
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Manipulating lists
1st = [1,2,3,4,5]

1st[2] = 99 # Replace element at position 2
print(lst) # Output: [1, 2, 99, 4, 5]

# Iterate over all list indices
for i in range( len(lst) ):

print( 1lst[i], end=" ") # Output: 1 2 99 4 5
print ()

# Iterate over all list elements
for n in 1st:

print( n, end=" ") # Output: 1 2 99 4 5
print )

» We can replace a list element using 1st[2] = 99
> |teration using indices: for i in range( len(lst) ):
> [teration using element directly: for n in 1lst:

Working with lists Computer Science
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Building lists
Python supports several ways of building a list besides enumerating all elements

odd = [1,3,5]
even = [2,4,6]

zeros = 3% [0] # List multiplication

1lst = odd + even + zeros # List concatenation

print(lst) # Output: [1, 3, 5, 2, 4, 6, 0, 0, 0]

1st += [10]

print(lst) # Output: [1, 3, 5, 2, 4, 6, 0, 0, 0, 10]

for i in range(100,141,10):
odd += [il
print(odd) # [1, 3, 5, 100, 110, 120, 130, 140]

> Hence, we can construct new lists by adding two (or more) lists
» Very much like string concatenation and string multiplication. You will see
that strings and lists have a lot of properties in common.

Working with lists Computer Science
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Example with list methods

The list class comes with several methods
animals = ['dog', 'cat', 'rabbit', 'wolf']

animals.append('tiger') # Add 'tiger' at the end of the list
print (animals) # ['dog', 'cat', 'rabbit', 'wolf', 'tiger']

animals.insert(0, 'fox') # Insert 'fox' at position O
print(animals) # ['fox', 'dog', 'cat', 'rabbit', 'wolf', 'tiger']

animals.remove('rabbit') # Remove first instance of 'rabbit'

print (animals) # ['fox', 'dog', 'cat', 'wolf', 'tiger']
animals.pop(1). # Remove element at position 1

print (animals) # ['fox', 'cat', 'wolf', 'tiger']
animals.sort () # Sort alphabetically

print(animals) # ['cat', 'foz', 'tiger', 'wolf']

All these methods manipulates (changes) the list content.

Working with lists Computer Science
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More list methods

List methods in addition to append, insert, remove, pop, and sort
count () : Returns the number of elements in the list

index () : Returns the position where n first occurs

reverse() : Reverses the order of the elements in the list

copy () : Returns a copy of the list (a new list)

clear () : Removes all elements from the list

vV v vy vVvyyvyy

extend( list 2): Appends list2 to this list

Working with lists Computer Science
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Example starting with an empty list

from random import randint

numbers = [] # We start with an empty list
for i in range(10):
rn = randint(1,100)

numbers. append( rn ) # Append one element at the time
print ( numbers ) # [26, 90, 77, 82, 30, 48, 100, 85, 55, 88]
numbers.reverse() # Reverse order of element
print ( numbers ) # [88, 55, 85, 100, 48, 30, 82, 77, 90, 26]
numbers . sort () # Sort in ascending order
print( numbers ) # [26, 30, 48, 55, 77, 82, 85, 88, 90, 100]

numbers.sort(reverse = True) # Sort in descending order
print( numbers ) # [100, 90, 88, 85, 82, 77, b5, 48, 30, 26]

> We start with an empty list (numbers = []1) and add new random numbers one
at the time (numbers.append( rn ))

> By overriding default reverse = True in sort we change the sorting order

Working with lists Computer Science
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A 10 minute break?

Working with lists Computer Science
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Sequences
Strings and lists are both sequences and have a lot in common
s = "abcdef" a=1[1,2,3,4,5,6]
print( len(s) ) #5 print( len(a) ) #5
print ( max(s) ) # e print ( max(a) ) # 5
print( min(s) ) # a print( min(a) ) # 1
print( s[3]) #d print( a[3]) # 4
print( s[1:3]1) # be print ( al1:3]1) # [2, 3]
for c in s: for n in a:

print(c, end=" ") #a b c d e print(n, end=" ") # 123 4 5
print () print ()

> Something that works for strings often works for list.

> However, certain things doesn't make sense in both cases, for example

» split() doesn’'t make sense for a list
» sum() doesn't make sense for a string

> String object are immutable = can't be modified once created
> List objects are mutable = can be modified after creation

Slicing sequences Computer Science
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Slicing sequences

Accessing certain parts using slicing works for all sequences

>

Accessing certain parts using slicing works for all sequences

> Similar to range a slice looks like [start: stop: step]

vvyVvyy

>
>

Slicing sequences

Objects and Lists

. where all of them has certain default values

Default values: start = 0, stop = len(...)+1, step = 1

Remember that stop is not included when used

Example: Various slices for list a = [0,1,2,3,4,5,6,7,8,9]

a[2:5] ==> [2, 3, 4]

al[2:9:2] ==> [2, 4, 6, 8]

al[6:2:-1] ==> [6, 5, 4, 3]

al:6:] ==> [0, 1, 2, 3, 4, 5] (Uses default for start and step)
a[6::] ==> [5, 6, 7, 8, 9] (Uses default for stop and step
al::] ==> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] (All default ==> list copy)
al::-1] ==> [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] (Reverse copy)
Remember that it also works for strings

al::-1] looks rather cryptic but is frequently used to reverse sequences

Computer Science
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Example: Reversing strings
Two variants to reverse a string

def reverse(s):
rev = nn
for c in s: # Add characters in reverse order
rev = c + rev
return rev

# Program starts

s = "Python"

revl = reverse(s) # Call function reverse(s)
print(revl) # Output: nohtyP

rev2 = s[::-1] # Slicing

print (rev2) # Output: nohtyP

> Version 1: We build a new string by adding the characters in reverse order
> Version 2: We apply the slice s[::-1] = the entire string (start = 0,

stop = len(s)+1) in reverse order (step = -1)

Slicing sequences Computer Science
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Search using keyword in

def contains(s,x): # True iff string s contains character
for ¢ in s:
if ¢ ==
return True
return False

# Program starts
s = "Python"
'y
if contains(s,c):

print(s, "contains", c) # Output: Python contains y

c = !

if ¢ in s: # Search for char c in string s
print(s, "contains", c) # Output: Python contains y

a = [1,2,3,4,5]
n=3
if n in a: # Search for number n in list a
print(a, "contains", n) # Output: [1, 2, 3, 4, 5] contains 3

Hence, the keyword in can also be used to search for elements in a sequence

Slicing sequences Computer Science
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Convert ranges and strings to lists

The function 1ist () can convert strings and ranges to lists

a = list("Hello")
print( a, type(a) ) # Output: ['H', 'e', 'l', 'l', 'o'] <class 'list'>

b = list( range(1,6) )
print( b, type(b) ) # Output: [1, 2, 3, 4, 5] <class 'list'>

> 1list() is a conversion function just like int(), float(), str(), and bool()
> list(x) tries to convert x into a list

> 1list(...) works for strings and ranges and a few other constructs

Slicing sequences Computer Science
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List Element Removal

Previously, using list class methods
animals = ['dog', 'cat', 'rabbit', 'wolf']

animals.remove('rabbit') # Remove first instance of 'rabbit’

print(animals) # ['dog', 'cat', 'wolf']
animals.pop(1). # Remove element at position 1
print (animals) # ['dog', 'wolf']

Using keyword del:

1st = list( range(10) )

print (1st) # 100, 1, 2, 3, 4, 5, 6, 7, 8, 9]
del 1st[1] # Delete element at position 1
print (1st) # [0, 2, 3, 4,5, 6, 7, 8 9]

del 1st[3:6] # Delete positons 3 to 5
print(lst) # [0, 2, 3, 7, 8 9]

> The keyword del can be used to delete elements or slices from a list

> It can also be used to remove elements from other types of data structures

Slicing sequences Computer Science
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Splitting strings using split()

s = input("Enter a few whitespace separated words: ")
words = s.split()
print (words)

s = input("Enter a few comma-separated words: ").split(",")
print (words)

Usage

Enter a few whitespace separated words: Do Re Mi Fa So La

[lDOI s 'Re’ s M1’ s 'Fa! s 'So! s lLal]

Enter a few comma-separated words: Do,Re,Mi,Fa,So,La

['DO' s 'Re’ s M1’ s 'Fa! s 'So! s lLal]
> We can split a string into a list of words using the string method split()
> split() uses by default whitespace (" ") to separate words, ...

> ... but can be configured to use other strings (e.g. split(","))

Slicing sequences Computer Science
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Applying functions to lists

Three variants for applying function f(x) = x? to all elements of a list

def square_list(a):
sq = [1
for n in a:
sq.append( n#*n )
return sq

def square(x): return x*x

# Program starts

1st = [1,2,3,4,5]

sq = square_list(1lst)

print(sq) # Output: [1, 4, 9, 16, 25]

# Using list comprehensions
sq = [square(p) for p in 1lst]
print(sq) # Output: [1, 4, 9, 16, 25]

sq = [p*p for p in 1lst]
print(sq) # Output: [1, 4, 9, 16, 25]

List comprehension Computer Science
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List comprehensions

from math import sqrt

1st = list( range(1,6) )
print(lst) # [1, 2, 3, 4, 5]

square = [n*n for n in 1lst]
print(square) # [1, 4, 9, 16, 25]

root = [round(sqrt(n),2) for n in 1st]
print (root) # [1.0, 1.41, 1.73, 2.0, 2.24]

[n*n for n in 1st] is a list comprehension
We apply the function n*n on all elements in list 1st

The result is a new list

vvyVvyy

They are a compact version of iterating over all elements and applying the
function on each element.

List comprehension Computer Science
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Conditional list comprehensions

# Integers dividable by 7 in range 1 to 50
div_7 = [n for n in range(1,51) if nJ,7==0]
print(div_7)

# Square all integers, remove everything else

1st = ["ABC", 23.4, 7, True, 9, "xyz", 10]
only_ints = [pow(x,2) for x in 1lst if type(x) == int]
print (only_ints)

Output

[7, 14, 21, 28, 35, 42, 49]
[49, 81, 100]

» We can add an if clause to list comprehensions to filter the content
> Only elements fulfilling the if criteria are added to list

> type(x) == int = type is an entity that can be used in boolean expressions

List comprehension Computer Science
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Read multiple integers

# Read multiple space separated integers from keyboard

text = input("Enter integers separated by one whitespace: ")

words = text.split()
ints = [int(w) for w in words]

print (f"Largest number is {max(ints)}, smallest is {min(ints)}")

Usage

Enter integers separated by one whitespace: 23 100 65 97 8 12
Largest number is 100, smallest is 8

1. We read input as a single string "23 100 65 97 8 12"

2. We split the string into a list of words
["23","100","65","97","8" ,"12"]

3. We convert each word (e.g. "23") to an integer (e.g. 23)

4. We find smallest/largest element by applying min/max on the integer list

List comprehension Computer Science
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Two-dimensional lists (Matrix)

# A two-dimensional list
a=1[1[1,2,3]1, [4,5,6], [7,8,9] ] # Format is 3 = 3

print(a) # [[1, 2, 3], [4, 5, 6], [7, 8, 91]
print(al0] [2]) # 1st row, 3rd column ==> 3
print(ali]) # Entire 2nd row ==> [/,5,6]

al2][2] = 99 # Replace 9 with 99
print(a) # [[1, 2, 3], [4, 5, 6], [7, 8, 99]]

# A 4x3 matriz with only 1 elements

b = [4x[1], 4x[1], 4*[1]]

print (b) # [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]
» A two-dimensional list is called a matrix
> It is a list containing other lists

» We access individual elements using a[0] [2]

Computer Science
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Simple list programming

Exercise: Write a program random_elements.py that:
> Creates a list containing 10 random floats in interval [-10,10]
> Converts the list to an integer list (correctly rounded off)

» Prints the smallest and largest elements in the integer list

List comprehension Computer Science
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random elements.py (Version 1)

import random

# A list with ten random floats
floats = []
for i in range(10):
rnd = random.uniform(-10,10)
floats.append (rnd)

# Correctly rounded off integers
ints = []
for £ in floats:

ints.append( round(f) )

# Print largest and smallest

lrg = max(ints)

sml = min(ints)

print(£"\nLargest element is {lrg}, smallest is {sml}")

We use append() repeatedly to build our lists.
List comprehension Computer Science
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random elements.py (Version 2)

A much shorter version using list comprehensions

import random as rd

# Ten random floats
floats = [rd.uniform(-10,10) for i in range(10)]

# Rounded of integers
ints = [round(f) for f in floats]

# Print largest and smallest
print (f"\nLargest element is {max(ints)}, smallest is {min(ints)}")

Which version is the best? Version 1 or 27

Computer Science
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Lists - Summary

v

A list is a sequential data structure
Sequential = all elements have a position, we have a first and last element

> Lists are mutable = we can manipulate (add, remove, swap) the list
elements

> Lists are very flexible = many different ways to create and manipulate
them

> List and strings are both sequences = many properties in common

> Lists are great = we use them a lot = get familiar with them!

List comprehension Computer Science
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