session_6-lists 2020-09-22, 09:02

Session 6

1DV501 Intro to programming

Software components are used like hardware components.

A software system can be built largely by assembling pre-existing software building blocks.
The simplest of these is the function (textbook Chapter 6 and Chapter 7)

A more powerful technique uses software objects.

Python is object oriented

e An Object Oriented programming language allows the programmer to define, create, and manipulate
objects.

e Objects bundle together data and functions. Like other variables, each Python object has a type, or
class.

e Theterms class and type are synonymous.

e An object isaninstance ofa class °
e An object’s data consists of its instance variables
e object is an instance of a class

In [2]: a =1

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 1 of 28

session_6-lists 2020-09-22, 09:02

Classes and Objects
Primitive types (e.g. int) have simple values (e.g. 237+) and operations (e.g. |+, -, *, /).

Entities like for example a bank account have more complex values, they require a mixture of multiple
values to be correctly described

e A class is a definition of a more complex type
e Values of a class are called objects (or instances of a class)

class bank_account Object 1 Object 2 Object 3

Owner: Jonas Henrik Nils
No: 4758-8696 3246-9744 5432-2347

Balance: 34.345 kr 8.456kr 97.654kr

e Classes (e.g. bank_account have more complex values(e.g. Jonas, 4758-8696, 34.345kr)

e The current values associated with an objects (e.g. Jonas, 4758-8696, 34.345kr) is called the object
state

Methods

e Types like int have simple values like 237 and operations like *+
e Classes have complex values and a set of operators called methods
e Theclass string has for example a method called upper ()

s = "Hello" # "Hello" is an object of type/class string
S = s.upper() # Apply method on string object "Hello"
print(s) # Output: HELLO
In [4]: s = "Hello" # "Hello" is an object of type/class string
print(s.upper()) # Apply method on string object "Hello"
HELLO

In [7]: s.isdecimal()

Out[7]: False

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 2 of 28

session_6-lists 2020-09-22, 09:02

¢ A class defines properties of a given type of objects
¢ A class definition (often a separate file) is a bit of code defining:
= Attributes: The data we associate with the class (for example owner, account number, and saldo
for a back account)
= Methods: Operations we can do on an object (for example update balance on
bank account object)

Method Calls

e Classes come with a specific set of operators called methods
e The methods of class A can only be applied on objects of class A
e Methods are called (applied) on variables referencing an object

s = "My name is Sir Lancelot of Camelot."
print(s.upper())

e General pattern for a method call

object method name (parameter list
L

e object is an expression that represents object, above is a reference to a string object.

e The period, pronounced dot, associates an object expression with the method to be called.

e methodname is the name of the method to execute.

e The parameterlist is comma-separated list of parameters to the method. For some methods the
parameter list may be empty, but the parentheses always are required.

¢ In this lecture we look at a few common classes from the Python library

e We will not create our own classes

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 3 of 28

session_6-lists

String objects and methods

The string class str

e Strings are objects of a predefined class “str

print(type("What.. is your favourite colour?"))

ss 'str'>

o We create new string objects using double "Hi" or single quotes 'Hi'

e The string class str has many methods

s = "Blue. Right. 0Off you go."

print(s.upper())
print(s.count("1"))
print(s.find("1lo"))
print(s.endswith("xxx"))

print(s.isalpha())

.count("1") number of "I"in string s
.find("lo") first position of "lo" in string s

[J
n n n n

In [12]: s = "Blue. Right. Off you go."
print(s.upper())
print(s.count("f"))
print(s.find("e."))
print(s.endswith("xxx"))
print(s.isalpha())
s = "Arthur"

print(s.isalpha())

BLUE. RIGHT. OFF YOU GO.
2

3

False

False

True

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

.endswith("xxx" is True if string s ends with "xxx"
.isalpha() True if string s only contains letters

2020-09-22, 09:02

Output: <cla

Page 4 of 28

session_6-lists 2020-09-22, 09:02

The Python Standard Library

e The string class str comes with many methods

e It is hard to remember all details about all method

e The official documentation for the string class is:

e https://docs.python.org/3/library/ (https://docs.python.org/3/library/)

¢ The documentation is called the Python Standard Library

e The website documents all Python's built-in types, classes and functions

e Hard reading since designed for professionals

e This documentation (and your IDE) will be your only help at the Python Test -->Get familiar with
it!

Methods vs Built-in Function

e Many built-in functions in Python can also be applied on strings

s = "abcABC"

print(len(s)) # Output:6

print(min(s)) # Output: A

print(max(s)) # Output: c

print(min("aAl")) # Output: 1

print(min("aA 1{")). # Output: " " (whitespace)
print(max("a’A 1{")) # Output: {

e min(s) -> first character in alphabetical order (Returns a character which is alphabetically the
lowest character in the string.)

e max(s) ->last character in alphabetical order

e alphabetical order: First digits, than upper case, then lower case, other character are sorted based
on their ASCIl number

¢ Notice also how built-in functions are applied (e.g. len(s)) compared to how methods are applied

(e.9. s.upper())

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 5 of 28

https://docs.python.org/3/library/

session_6-lists

In [13]:

In [14]:

In [16]:

Out[1l6]:

2020-09-22, 09:02

s = "abcABC"

print(len(s))
print(min(s))
print(max(s))
print(min("aAl"))
print(min("aA 1{"))
print(max("aA 1{"))

— Q P o

s = 'What is the air-speed velocity of an unladen swallow?'

print(len(s))
print(min(s))
print(max(s))

53

y

ord('a')

97

fractions — Rational numbers

Source code: Lib/fractions.py

https://docs.python.org/3/library/fractions.html (https://docs.python.org/3/library/fractions.html)

The fractions module provides support for rational number arithmetic.

A Fraction instance can be constructed from a pair of integers, from another rational number, or from a

string.

class
class
class
class
class

fractions.
fractions.

fractions.

fractions

fractions.

Fraction(numerator=0, denominator=1)
Fraction(other fraction)
Fraction(float)

.Fraction(decimal)

Fraction(string)

The first version requires that numerator and denominator are instances of numbers. Rational and returns
a new Fraction instance with value numerator/denominator.

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 6 of 28

https://docs.python.org/3/library/fractions.html

session_6-lists

In [18]: from fractions import Fraction

Fraction(0.5)

Out[18]: Fraction(l, 2)

Fraction objects and methods

The class Fraction

e The module fractions contains a class Fraction

from fractions import Fraction

f1 Fraction(1l,2)
f2 = Fraction(1l,3)
fsum = f1+£2

print(f1l, type(fl))
print (fsum)

print (fsum.numerator)
print (fsum.denominator)

2020-09-22, 09:02

Create Fraction object 1/2

Store 1/2 + 1/3 in variable fsum

Output:
Output:
Output:
Output:

1/2 <class
5/6

5

6

'fractions.Fraction'>

e We create a Fraction object 1/2 by calling a method Fraction(1,2)
¢ Methods used to create new objects are called constructors
e Creating a new object of class A using a constructor named A, is the standard approach
e fsum.numerator is nota method call, we are accessing the attribute called numerator ->the

data values representing the object state

https://docs.python.org/3/library/fractions.html (https://docs.python.org/3/library/fractions.html)

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Page 7 of 28

https://docs.python.org/3/library/fractions.html

session_6-lists 2020-09-22, 09:02

In [19]: from fractions import Fraction

fl1 = Fraction(1l,2) # Create Fraction object 1/2

f2 = Fraction(1,3)

fsum = f1+£2 # Store 1/2 + 1/3 in variable fsum
print(fl, type(fl)) # Output: 1/2 <class 'fractions.Fraction'
>

print(fsum) # Output: 5/6

print (fsum.numerator) # Output: 5

print (fsum.denominator) # Output: 6

1/2 <class 'fractions.Fraction'>
5/6

5

6

In [26]: £fsum.

Out[26]: 5

limit denominator (max denominator=1000000)
Finds and returns the closest Fraction to self that has denominator at most max_denominator.
e This method is useful for finding rational approximations to a given floating-point number:

In [27]: from fractions import Fraction
Fraction('3.1415926535897932"').1limit denominator(10)

Out[27]: Fraction(22, 7)

In [32]: from math import pi
Fraction(pi).limit denominator (100000)

Out[32]: Fraction(312689, 99532)

In [30]: pi-(22/7)

Out[30]: -0.0012644892673496777

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 8 of 28

session_6-lists

In [33]:

In []:

2020-09-22, 09:02

fl = Fraction(6,345)
f2 = Fraction(53/212)
print((£1+£2))
print((£f1*£2))

123/460
1/230

Fraction.from float(0.3) # From Python 3.2 onwards, you can also co
nstruct a Fraction instance directly from a float.

e We introduce class Fraction justto show how a typical class is used
e Objects in a typical class are created using constructors

e String objects created using " " or ' ' is an exception
= The string object creation (and lists and tuples objects) is simplified since their creation is very
common

Working with lists

Data Structures -- Introduction

o We often need to handle large sets of data
e A data structure is a model for storing/handling such data sets
e Scenarios where data structures are needed

1. Students in a course

2. Measurements from an experiment

3. Queue to get an apartment at our campus

4. Telephone numbers in Stockholm

¢ Different scenarios require different data structure properties

oD =

Data should be ordered

Not the same element twice

Important that look-up is fast

In general: Important that operations X,Y,Z are fast

e Selecting data structure is a design decision -> might affect performance, modifiability, and program
comprehension.
e Today: Lists, later on tuples, sets, and dictionaries

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 9 of 28

session_6-lists 2020-09-22, 09:02

Introducing lists

1=11,2,3,4,5] # A list containing 1,2,3,4,5

print(1, type(l)) # Output: [1, 2, 3, 4, 5] <class 'list'>
print(1[0], type(l[0])) # Output: 1 <class 'int'>

e Alistlike [1,2,3,4,5] isanobjectofclass 1list

e We create lists using enclosing square brackets

e They represent a sequence of data, each value is called an element

¢ We can access individual element using square brackets like 1[0]

e The first positionis 0 -> 1[0] is the first element

[1,2,3,4,5] isaninteger list, but we can create lists of any type (or with mixed types)
list is a built-in type -> no need for any import statemen’

In [37]: min lista = [1,2,546564,3,4.5,"'en string']

In [41]: print(min lista[:-1])

[1, 2, 546564, 3, 4.5]

In [43]: min andra lista = [0,2,3,min lista,fl]

In [46]: print(min andra lista[3][1])

2

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 10 of 28

session_6-lists 2020-09-22, 09:02

Manipulating lists

1st = [1,2,3,4,5]

1st[2] = 99 # Replace element at position 2
print(lst) # Output: [1, 2, 99, 4, 5]

Iterate over all list indices
for i in range(len(lst)):

print(1lst[i], end=" ") # Output: 1 2 99 4 5
print()

Iterate over all list elements
for n in lst:

print(n, end=" ") # Output: 1 2 99 4 5
print()

e We can replace a list element using 1st[2] = 99
e lteration using indices: for i in range(len(lst)):
e lteration using element directly: for n in 1st:

In [47]1: 1lst = [1,2,3,4,5]

Ist[2] = 99 # Replace element at position 2
print(lst) # Output: [1, 2, 99, 4, 5]

Iterate over all list indices
for i in range(len(lst)):

print(1lst[i], end=" ") # Output: 1 2 99 4 5
print()

Iterate over all list elements
for n in 1lst:

print(n, end=" ") # Output: 1 2 99 4 5
print()

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 11 of 28

session_6-lists 2020-09-22, 09:02

In [48]: my list = [1,3,4,'Sir Lancelot of Camelot',2.5]
if 3 in my list: print('Yes, there is a three')
if not 'King Arthur' in my list: print('And not King Arthur')
if 'Lancelot of Camelot' in my list: print('And Sir Lancelot of Cam

elot') # note this

Yes, there is a three
And not King Arthur

Building lists
Python supports several ways of building a list besides enumerating all elements

odd = [1,3,5]
even = [2,4,6]

zeros = 3*[0] # List multiplication
1st = odd + even + zeros # List concatenation#*
print(lst)
1st += [10]
print(lst)

for i in range(100,141,10):
odd += [1]
print(odd)

e Hence, we can construct new lists by adding two (or more) lists
e Very much like string concatenation and string multiplication. You will see that strings and lists have
a lot of properties in common.

*the action of linking things together in a series

In [49]: odd = [1,3,5]

even = [2,4,6]

zeros = 3%[0] # List multiplication
1lst = odd + even + zeros # List concatenation#*
print(lst)

In [51]: 1st += [10]
print(lst)

rr, 3, 5, 2, 4, 6, 0, 0, 0, 10, 10]

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 12 of 28

session_6-lists 2020-09-22, 09:02

In [52]: for i in range(100,141,10):
odd += [i]
print(odd)

rr, 3, 5, 100, 110, 120, 130, 140]

Example with list methods

e The list class comes with several methods
animals = ['dog', 'cat', 'rabbit', 'wolf']
animals.append('tiger') # Add 'tiger' at the end of the list
print(animals)

animals.insert(0, 'fox') # Insert 'fox' at position 0
print(animals)

animals.remove('rabbit') # Remove first instance of 'rabbit'
print(animals)

animals.pop(1l) # Remove element at position 1
print(animals)

animals.sort() # Sort alphabetically
print(animals)

¢ All these methods manipulates (changes) the list content.

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 13 of 28

session_6-lists 2020-09-22, 09:02

In [53]: animals = ['dog', 'cat', 'rabbit', 'wolf']

animals.append('tiger') # Add 'tiger' at the end of the list
print(animals) # ['dog', 'cat', 'rabbit', 'wolf', 'tiger'
1

animals.insert(0, 'fox') # Insert 'fox' at position 0
print(animals) # ['fox', 'dog', 'cat', 'rabbit', 'wolf',

"tiger']

animals.remove('rabbit') # Remove first instance of 'rabbit'

print(animals) # ['fox', 'dog', 'cat', 'wolf', 'tiger']
animals.pop(1l) # Remove element at position 1
print(animals) # ['fox', 'cat', 'wolf', 'tiger']
animals.sort() # Sort alphabetically

print(animals) # ['cat', 'fox', 'tiger', 'wolf']

['dog', 'cat', 'rabbit', 'wolf', 'tiger']
['fox', 'dog', 'cat', 'rabbit', 'wolf', 'tiger']
['fox', 'dog', 'cat', 'wolf', 'tiger']

['fox', 'cat', 'wolf', 'tiger']

['cat', 'fox', 'tiger', 'wolf']

More list methods

List methods in addition to append, insert, remove, pop and sort

e count () : Returns the number of elements in the list

e index() : Returns the position where n first occurs

e reverse() : Reverses the order of the elements in the list
e copy() : Returns a copy of the list (a new list)

e clear() : Removes all elements from the list

e extend(list 2) :Appends list2 to this list

In [54]: animals.extend(animals)
print(animals)

['cat', 'fox', 'tiger', 'wolf', 'cat', 'fox', 'tiger', 'wolf']

In [55]: animals.count('cat')

Out[55]: 2

In [57]: animals2 = animals

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 14 of 28

session_6-lists

In [60]:

Out[60]:

In [63]:

Out[63]:

In [64]:

Out[64]:

In [65]:

In []:

In [66]:

In [67]:

Out[67]:

In [68]:

animals.pop(0)

cat

animals2.pop(0)

'fox'

animals

['tiger', 'wolf', 'cat', 'fox',

Why not just assign the list to a new name? Not copy???

animals copy = animals.copy()
or ?

animals2 = animals

print(len(animals_ copy))
print(len(animals2))

6
6

animals.pop(4)

"tiger'

print(len(animals_ copy))
print(len(animals?2))

"tiger',

'wolf']

2020-09-22, 09:02

#By assignment you are getting different names for the same object.

6
5

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Page 15 of 28

session_6-lists

2020-09-22, 09:02

Example starting with an empty list

from random import randint

numbers = []
for i in range(10):
rn = randint(1,100)
numbers.append(rn)
print(numbers)

numbers.reverse()
print(numbers)

numbers.sort()

print(numbers)

We start with an empty list

Append one element at the time

Reverse order of element

Sort in ascending order

numbers.sort(reverse = True) # Sort in descending order

print(numbers)

e We start with an empty list (numbers

(numbers.append(rn))
e By overriding default reverse =

In [69]:

numbers = []

for i in range(10):

= []) and add new random numbers one at the time

True in sort we change the sorting order

from random import randint

We start with an empty list

rn = randint(1,100)

numbers . append (
print('Random: ',

numbers.reverse()
print('Reverse: '
numbers.sort()
print('Ascending:

numbers.sort (reverse

print('Descending:

Random: [1,
Reverse:

Ascending: [,
Descending:

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

[84,

[99,

rn) # Append one element at the time
numbers) #

Reverse order of element
numbers) #

Sort in ascending order
numbers) #

= True) # Sort in descending order
', numbers) #

78, 86, 99, 74, 47, 45, 62, 44, 84]

44, 62, 45, 47, 74, 99, 86, 78, 1]

44, 45, 47, 62, 74, 78, 84, 86, 99]

86, 84, 78, 74, 62, 47, 45, 44, 1]

Page 16 of 28

session_6-lists 2020-09-22, 09:02

Slicing sequences

Sequences

Strings and lists are both sequences and have a lot in common

String

s = "abcdef"

print(len(s)) # 5
print(max(s)) # e
print(min(s)) # a
print(s[3]) # d
print(s[l:31]) # bc

for ¢ in s:
print(c, end=" ") # a b c d e
print()

List

a=1[1,2,3,4,5,6]

print(len(a)) # 5
print(max(a)) # 5
print(min(a)) # 1
print(a[3]) # 4
print(a[l:3]) #[2, 3]

for n in a:
print(n, end=" ") # 1 2 3 4 5
print()

e Something that works for strings often works for list.

e However, certain things doesn't make sense in both cases, for example
= split() doesn't make sense for a list
= sum() doesn't make sense for a string

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 17 of 28

session_6-lists

Slicing sequences

Accessing certain parts using slicing works for all sequences

Accessing certain parts using slicing works for all sequences
Similar to range a slice looks like [start: stop: step]

... where all of them has certain default values

e Default values: start = 0, stop = len(...)+1, step =1
e Remember that stop is not included when used

e Example: Various slices for list a = [0,1,2,3,4,5,6,7,8,9]

a[2:5] ==> [2, 3, 4]
a[2:9:2] ==> [2, 4, 6
a[6:2:-1] ==> [6, 5,

8]
¢ 3]

14
4

a[:6:] ==> [0, 1, 2, 3, 4, 5] (Uses default for start and step)
8

a[5::] ==> [5, 6, 7, 8, 9] (Uses default for stop and step

2020-09-22, 09:02

a[::] ==> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] (All default ==> list copy)

a[::-1] ==> [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] (Reverse copy)

e Remember that it also works for strings
e af[::-1] looks rather cryptic but is frequently used to reverse sequences

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Page 18 of 28

session_6-lists 2020-09-22, 09:02

Example: Reversing strings
e Two variants to reverse a string

def reverse(s):
rev = nmn
for ¢ in s: # Add characters in reverse order
rev = ¢ + rev

return rev

Program starts

s = "Python"

revl = reverse(s) # Call function reverse(s)
print(revl)

rev2 = s[::-1] # Slicing
print(rev2)

e \Version 1: We build a new string by adding the characters in reverse order
e Version 2: We apply the slice s[::-1] ->the entire string (start = 0, stop = len(s)+1)in

reverse order (step = -1)
In [70]: def reverse(s):
rev = nn
for ¢ in s: # Add characters in reverse order

rev = ¢ + rev
return rev

In [71]: reverse('Brother Maynard — bring forth the holy hand grenade!')

Out[71]: '!edanerg dnah yloh eht htrof gnirb — dranyaM rehtorB'
In [72]: 'Brother Maynard — bring forth the holy hand grenade! '[::-1]
Out[72]: '!edanerg dnah yloh eht htrof gnirb — dranyaM rehtorB'

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 19 of 28

session_6-lists 2020-09-22, 09:02

Search using keyword in

def contains(s,l):
for ¢ in s:
if ¢ == 1:
return True

return False

Program starts
s = "Python"

c ="y’

if contains(s,c):

print(s, "contains", c) # Output: Python contains y

if ¢ in s: # Search for char c¢ in string s
print(s, "contains", c¢) # Output: Python contains y

a=1_[1,2,3,4,5]
n =3
if n in a: # Search for number n in list a

print(a, "contains", n) # Output: [1, 2, 3, 4, 5] contains 3

¢ Hence, the keyword in can also be used to search for elements in a sequence

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 20 of 28

session_6-lists 2020-09-22, 09:02

In [73]: def contains(s,l):
for ¢ in s:
if ¢ == 1:
return True
return False

Program starts
S "Python"
c = lyl
if contains(s,c):
print(s, "contains", c) # Output: Python contains y

if ¢ in s: # Search for char c¢ in string s
print(s, "contains", c) # Output: Python contains y

a=11,2,3,4,5]
n =3
if n in a: # Search for number n in list a
print(a, "contains", n) # Output: [1, 2, 3, 4, 5] contains 3

Python contains y
Python contains y
[1, 2, 3, 4, 5] contains 3

In [75]: s = 'Hello'
if 'H' in s: print('Yes')

Yes

Convert ranges and strings to lists

The function 1list() can convert strings and ranges to lists

a = list("Nobody expects the Spanish Inquisition")
print(a, type(a))

b = list(range(1l,6))
print(b, type(b))

e list() isaconvertion functionlike int(), float(), str(),and bool()
e list(x) triestoconvert x into a list
e list(...) works for strings and ranges and a few other contsructs

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 21 of 28

session_6-lists

In [76]: a = list("Nobody expects the Spanish Inquisition")

2020-09-22, 09:02

print(a, type(a)) # Output: ['H', 'e', '1', '1', 'o'] <class
'list'>

['N', lol, lbl, loll |d|, lyl, 1 l, lel, lxl’ lpl, |el, lcl, ltl,

ls|, 1 l, ltl, Ihl’ |e|, 1 I, lsl, lpl, lal, Inl’ |i|, ISI, lhl, 1

l, lIl, lnl, lql, lu|, |il, ls|, lil, ltl, lil, lo|, |nl] <ClaSS

list'>

In [77]: b = list(range(l,6))

print(b, type(b))

[1, 2, 3, 4, 5] <class 'list'>

Splitting strings using split ()

s = input("Enter a few words: ")
words = s.split()
print (words)

words = input("Enter a few comma-separated words: ").split(",")
print(words)

Usage

Enter a few words: Spam! Spam! Spam! Spam! Spam! Spam!
['Spam!', 'Spam!', 'Spam!', 'Spam!', 'Spam!', 'Spam!']

Enter a few comma-separated words: Egg,Sausage,Spam,Egg,Spam
['Egg', 'Sausage', 'Spam', 'Egg', 'Spam']

We can split a string into a list of words using the string method \verb+split()+
split() uses by default whitespace (" ") to separate words, ...
... but can be configured to use other strings (e.g. split(","))

In [78]: s = input("Enter a few words: ")

words = s.split()
print (words)

words = input("Enter a few comma-separated words: ").split(",")

print (words)

Enter a few words: Har skriver jag olika saker
['Har', 'skriver', 'jag', 'olika', 'saker']

Enter a few comma-separated words: Med,komma,tecken
['Med', 'komma', 'tecken']

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Page 22 of 28

session_6-lists

List comprehension

Applying functions to lists

e Three variants for applying function f(x) = x> to all elements of a list

def square list(a):
sq = []
for n in a:
sq.append(n*n)
return sqg

def square(x): return x*x

Program starts

1st = [1,2,3,4,5]

sq = square list(lst)

print(sq) # Output: [1, 4, 9, 16, 25]

Using list comprehensions
sq = [square(p) for p in 1st]
print(sq) # Output: [1, 4, 9, 16, 25]

sq = [p*p for p in lst]
print(sq) # Output: [1, 4, 9, 16, 25]

In [79]: def square list(a):
sq = []
for n in a:
sq.append(n*n)
return sqg

In [89]: square(1l0)

Out[89]: 100

In [88]: [square(p) for p in min nummer lista]

out[88]: [4, 16, 36, 100]

In [91]: [x**x for x in min nummer lista[:-1]]

Out[91]: [4, 256, 46656]

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

2020-09-22, 09:02

Page 23 of 28

session_6-lists

In []: 1lst =111,2,3,4,5]

Li

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

print(square list(lst))
##

sq = square list(lst)
print(sq)

In []: # Using list comprehensions
sq = [square(p) for p in 1lst]

print(sq)

In []J: sq = [p*p for p in 1lst]
print(sq)

st comprehensions

from math import sqrt

1st = list(range(l,6))
print(lst) #1711, 2, 3, 4, 5]

square = [n*n for n in lst]
print (square) #[1, 4, 9, 16, 25]

root = [round(sqrt(n),2) for n in lst]

print(root)

[n*n for n in 1lst] is a list comprehension
We apply the function n*n on all elements in list 1st

The result is a new list

2020-09-22, 09:02

They are a compact version of iterating over all elements and applying the function on each element.

Page 24 of 28

session_6-lists

Advanced list comprehensions

Integers dividable by 7 in range 1 to 50

div 7

[n for n in range(l,51) if n%7==0]

print(div_7)

Square all integers, remove everything else

1st =

["ABC", 23.4, 7, True, 9, "xyz", 10]
only ints = [pow(x,2) for x in lst if type(x) == int]

print(only ints)

Qutput [7,
[49, 81,

e We can add an \verb+if+ clause to list comprehensions to filter the content

14, 21, 28, 35, 42, 49]

100]

e Only elements fulfilling the if criteria are added to list

e type(x) == int ->type is an entity that can be used in boolean expressions
In [92]: [n for n in range(l,51) if n%7==0]
Out[92]1: [7, 14, 21, 28, 35, 42, 49]

In []: # Square all integers, remove everything else

lst = ["aABC", 23.4, 7, True, 9, "xyz", 10]

only ints = [pow(Xx,2) for x in lst if type(x) == int]

print(only ints)

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

2020-09-22, 09:02

Page 25 of 28

session_6-lists 2020-09-22, 09:02

Read multiple integers

Read multiple space separated integers from keyboard

text = input("Enter integers separated by one whitespace: ")
words = text.split()

ints = [int(w) for w in words]

print (f"Largest number is {max(ints)}, smallest is {min(ints)}")

Usage

Enter integers separated by one whitespace: 23 100 65 97 8 12
Largest number is 100, smallest is 8

We read input as a single string "23 100 65 97 8 12"+

We split the string into a list of words ["23","100","65","97","8","12"]
We convert each word (e.g. "23") to an integer (e.g. 23)

We find smallest/largest element by applying min/max on the integer list

o

In [93]: # Read multiple space separated integers from keyboard
text = input("Enter integers separated by one whitespace: ")
words = text.split()
ints = [int(w) for w in words]

print (f"Largest number is {max(ints)}, smallest is {min(ints)}")

Enter integers separated by one whitespace: 23 100 65 97 8 12
Largest number is 100, smallest is 8

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 26 of 28

session_6-lists 2020-09-22, 09:02

Two-dimensional lists (Matrix)

A two-dimensional list
a=111,2,31, [4,5,6]1, [7,8,9] 1 # Format is 3x3

print(a) #1101, 2, 3], [4, 5, 6], [7, 8, 9]]
print(a[0][2]) # l1st row, 3rd column ==> 3
print(a[l]) # Entire 2nd row ==> [4,5,6]

a[21[21 = 99 # Replace 9 with 99
print(a) #1001, 2, 3], [4, 5, 6], [7, 8, 99]]

A 4x3 matrix with only 1 elements
b = [4*[1], 4*[1], 4*[1]]
print(b) #01, 1, 1, 11, (1, 1, 1, 1], [1, 1, 1, 1]]

¢ Atwo-dimensional list is called a matrix
¢ [tis a list containing other lists
o We access individual elements using a[0][2]

In[]J: a=111,2,31, [4,5,61, [7,8,9] 1 # Format is 3x3

In []: a[0]

Simple list programming
Exercise: Write a program random elements.py that:

e Creates a list containing 10 random floats in interval [-10,10]
e Converts the list to an integer list (correctly rounded off)
¢ Prints the smallest and largest elements in the integer list

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false Page 27 of 28

session_6-lists

In []: import random

A list with ten random floats
floats = []
for i in range(10):
rnd = random.uniform(-10,10)
floats.append(rnd)

Correctly rounded off integers
ints = []
for £ in floats:

2020-09-22, 09:02

ints.append(round(f)) # NOTE We use append() repeatedly to b

uild our lists.

Print largest and smallest
lrg = max(ints)
sml = min(ints)

print(f"\nLargest element is {lrg}, smallest is {sml}")

A much shorter version using list comprehensions

(Version 2)

In []: import random as rd

Ten random floats
floats = [rd.uniform(-10,10) for i in range(10)]

Rounded of integers
ints = [round(f) for f in floats]

Print largest and smallest
print(f"\nLargest element is {max(ints)}, smallest is

In []:

http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

min(ints)}")

Page 28 of 28

