
2020-09-22, 09:02session_6-lists

Page 1 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Session 6

1DV501 Intro to programming

Software components are used like hardware components.
A software system can be built largely by assembling pre-existing software building blocks.
The simplest of these is the function (textbook Chapter 6 and Chapter 7)
A more powerful technique uses software objects.

Python is object oriented

An Object Oriented programming language allows the programmer to define, create, and manipulate
objects.
Objects bundle together data and functions. Like other variables, each Python object has a type, or
class.
The terms class and type are synonymous.

An object is an instance of a class `
An object’s data consists of its instance variables
object is an instance of a class

In [2]: a = 1

2020-09-22, 09:02session_6-lists

Page 2 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Classes and Objects
Primitive types (e.g. int) have simple values (e.g. 237+) and operations (e.g. |+, -, *, /).

Entities like for example a bank account have more complex values, they require a mixture of multiple
values to be correctly described

A class is a definition of a more complex type
Values of a class are called objects (or instances of a class)

class bank_account Object 1 Object 2 Object 3

Owner: Jonas Henrik Nils

No: 4758-8696 3246-9744 5432-2347

Balance: 34.345 kr 8.456kr 97.654kr

Classes (e.g. bank_account have more complex values(e.g. Jonas, 4758-8696, 34.345kr)
The current values associated with an objects (e.g. Jonas, 4758-8696, 34.345kr) is called the object
state

Methods
Types like int have simple values like 237 and operations like *+
Classes have complex values and a set of operators called methods
The class string has for example a method called upper()

s = "Hello" # "Hello" is an object of type/class string

s = s.upper() # Apply method on string object "Hello"
print(s) # Output: HELLO

In [4]: s = "Hello" # "Hello" is an object of type/class string

print(s.upper()) # Apply method on string object "Hello"

In [7]: s.isdecimal()

HELLO

Out[7]: False

2020-09-22, 09:02session_6-lists

Page 3 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

A class defines properties of a given type of objects
A class definition (often a separate file) is a bit of code defining:

Attributes: The data we associate with the class (for example owner, account number, and saldo
for a back account)
Methods: Operations we can do on an object (for example update_balance on
bank_account object)

Method Calls
Classes come with a specific set of operators called methods
The methods of class A can only be applied on objects of class A
Methods are called (applied) on variables referencing an object

s = "My name is Sir Lancelot of Camelot."
print(s.upper())

General pattern for a method call

object is an expression that represents object, above is a reference to a string object.
The period, pronounced dot, associates an object expression with the method to be called.
methodname is the name of the method to execute.
The parameterlist is comma-separated list of parameters to the method. For some methods the
parameter list may be empty, but the parentheses always are required.
In this lecture we look at a few common classes from the Python library
We will not create our own classes

2020-09-22, 09:02session_6-lists

Page 4 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

String objects and methods

The string class str
Strings are objects of a predefined class `str

We create new string objects using double "Hi" or single quotes 'Hi'
The string class str has many methods

s.count("l") number of "l" in string s
s.find("lo") first position of "lo" in string s
s.endswith("xxx" is True if string s ends with "xxx"
s.isalpha() True if string s only contains letters

print(type("What… is your favourite colour?")) # Output: <cla
ss 'str'>

s = "Blue. Right. Off you go."

print(s.upper())
print(s.count("l"))
print(s.find("lo"))
print(s.endswith("xxx"))
print(s.isalpha())

In [12]: s = "Blue. Right. Off you go."

print(s.upper())
print(s.count("f"))
print(s.find("e."))
print(s.endswith("xxx"))
print(s.isalpha())

s = "Arthur"

print(s.isalpha())

BLUE. RIGHT. OFF YOU GO.
2
3
False
False
True

2020-09-22, 09:02session_6-lists

Page 5 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

The Python Standard Library
The string class str comes with many methods
It is hard to remember all details about all method`
The official documentation for the string class is:
https://docs.python.org/3/library/ (https://docs.python.org/3/library/)
The documentation is called the Python Standard Library
The website documents all Python's built-in types, classes and functions
Hard reading since designed for professionals
This documentation (and your IDE) will be your only help at the Python Test -->Get familiar with
it!

Methods vs Built-in Function
Many built-in functions in Python can also be applied on strings

min(s) -> first character in alphabetical order (Returns a character which is alphabetically the
lowest character in the string.)
max(s) -> last character in alphabetical order

alphabetical order: First digits, than upper case, then lower case, other character are sorted based
on their ASCII number
Notice also how built-in functions are applied (e.g. len(s)) compared to how methods are applied
(e.g. s.upper())

s = "abcABC"

print(len(s)) # Output:6
print(min(s)) # Output: A
print(max(s)) # Output: c
print(min("aA1")) # Output: 1
print(min("aA 1{")). # Output: " " (whitespace)
print(max("aA 1{")) # Output: {

https://docs.python.org/3/library/

2020-09-22, 09:02session_6-lists

Page 6 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

In [13]: s = "abcABC"

print(len(s))
print(min(s))
print(max(s))
print(min("aA1"))
print(min("aA 1{"))
print(max("aA 1{"))

In [14]: s = 'What is the air-speed velocity of an unladen swallow?'

print(len(s))
print(min(s))
print(max(s))

In [16]: ord('a')

fractions — Rational numbers
Source code: Lib/fractions.py

https://docs.python.org/3/library/fractions.html (https://docs.python.org/3/library/fractions.html)

The fractions module provides support for rational number arithmetic.

A Fraction instance can be constructed from a pair of integers, from another rational number, or from a
string.

The first version requires that numerator and denominator are instances of numbers. Rational and returns
a new Fraction instance with value numerator/denominator.

class fractions.Fraction(numerator=0, denominator=1)
class fractions.Fraction(other_fraction)
class fractions.Fraction(float)
class fractions.Fraction(decimal)
class fractions.Fraction(string)

6
A
c
1

{

53

y

Out[16]: 97

https://docs.python.org/3/library/fractions.html

2020-09-22, 09:02session_6-lists

Page 7 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

In [18]: from fractions import Fraction

Fraction(0.5)

Fraction objects and methods

The class Fraction
The module fractions contains a class Fraction

We create a Fraction object 1/2 by calling a method Fraction(1,2)
Methods used to create new objects are called constructors
Creating a new object of class A using a constructor named A, is the standard approach
fsum.numerator is not a method call, we are accessing the attribute called numerator -> the

data values representing the object state

https://docs.python.org/3/library/fractions.html (https://docs.python.org/3/library/fractions.html)

from fractions import Fraction

f1 = Fraction(1,2) # Create Fraction object 1/2
f2 = Fraction(1,3)
fsum = f1+f2 # Store 1/2 + 1/3 in variable fsum

print(f1, type(f1)) # Output: 1/2 <class 'fractions.Fraction'>
print(fsum) # Output: 5/6
print(fsum.numerator) # Output: 5
print(fsum.denominator) # Output: 6

Out[18]: Fraction(1, 2)

https://docs.python.org/3/library/fractions.html

2020-09-22, 09:02session_6-lists

Page 8 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

In [19]: from fractions import Fraction

f1 = Fraction(1,2) # Create Fraction object 1/2
f2 = Fraction(1,3)
fsum = f1+f2 # Store 1/2 + 1/3 in variable fsum

print(f1, type(f1)) # Output: 1/2 <class 'fractions.Fraction'
>
print(fsum) # Output: 5/6
print(fsum.numerator) # Output: 5
print(fsum.denominator) # Output: 6

In [26]: fsum.

limit_denominator(max_denominator=1000000)

Finds and returns the closest Fraction to self that has denominator at most max_denominator.

This method is useful for finding rational approximations to a given floating-point number:

In [27]: from fractions import Fraction
Fraction('3.1415926535897932').limit_denominator(10)

In [32]: from math import pi
Fraction(pi).limit_denominator(100000)

In [30]: pi-(22/7)

1/2 <class 'fractions.Fraction'>
5/6
5
6

Out[26]: 5

Out[27]: Fraction(22, 7)

Out[32]: Fraction(312689, 99532)

Out[30]: -0.0012644892673496777

2020-09-22, 09:02session_6-lists

Page 9 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

In [33]: f1 = Fraction(6,345)
f2 = Fraction(53/212)
print((f1+f2))
print((f1*f2))

In []: Fraction.from_float(0.3) # From Python 3.2 onwards, you can also co
nstruct a Fraction instance directly from a float.

We introduce class Fraction just to show how a typical class is used
Objects in a typical class are created using constructors
String objects created using " " or ' ' is an exception

The string object creation (and lists and tuples objects) is simplified since their creation is very
common

Working with lists

Data Structures -- Introduction
We often need to handle large sets of data
A data structure is a model for storing/handling such data sets
Scenarios where data structures are needed

1. Students in a course
2. Measurements from an experiment
3. Queue to get an apartment at our campus
4. Telephone numbers in Stockholm

Different scenarios require different data structure properties

1. Data should be ordered
2. Not the same element twice
3. Important that look-up is fast
4. In general: Important that operations X,Y,Z are fast

Selecting data structure is a design decision -> might affect performance, modifiability, and program
comprehension.
Today: Lists, later on tuples, sets, and dictionaries

123/460
1/230

2020-09-22, 09:02session_6-lists

Page 10 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Introducing lists

A list like [1,2,3,4,5] is an object of class list
We create lists using enclosing square brackets
They represent a sequence of data, each value is called an element
We can access individual element using square brackets like l[0]
The first position is 0 -> l[0] is the first element
[1,2,3,4,5] is an integer list, but we can create lists of any type (or with mixed types)
list is a built-in type -> no need for any import statemen`

l = [1,2,3,4,5] # A list containing 1,2,3,4,5

print(l, type(l)) # Output: [1, 2, 3, 4, 5] <class 'list'>
print(l[0], type(l[0])) # Output: 1 <class 'int'>

In [37]: min_lista = [1,2,546564,3,4.5,'en string']

In [41]: print(min_lista[:-1])

In [43]: min_andra_lista = [0,2,3,min_lista,f1]

In [46]: print(min_andra_lista[3][1])

[1, 2, 546564, 3, 4.5]

2

2020-09-22, 09:02session_6-lists

Page 11 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Manipulating lists

We can replace a list element using lst[2] = 99
Iteration using indices: for i in range(len(lst)):
Iteration using element directly: for n in lst:

lst = [1,2,3,4,5]

lst[2] = 99 # Replace element at position 2
print(lst) # Output: [1, 2, 99, 4, 5]

Iterate over all list indices
for i in range(len(lst)):
 print(lst[i], end=" ") # Output: 1 2 99 4 5
print()

Iterate over all list elements
for n in lst:
 print(n, end=" ") # Output: 1 2 99 4 5
print()

In [47]: lst = [1,2,3,4,5]

lst[2] = 99 # Replace element at position 2
print(lst) # Output: [1, 2, 99, 4, 5]

Iterate over all list indices
for i in range(len(lst)):
 print(lst[i], end=" ") # Output: 1 2 99 4 5
print()

Iterate over all list elements
for n in lst:
 print(n, end=" ") # Output: 1 2 99 4 5
print()

[1, 2, 99, 4, 5]
1 2 99 4 5
1 2 99 4 5

2020-09-22, 09:02session_6-lists

Page 12 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

In [48]: my_list = [1,3,4,'Sir Lancelot of Camelot',2.5]

if 3 in my_list: print('Yes, there is a three')
if not 'King Arthur' in my_list: print('And not King Arthur')
if 'Lancelot of Camelot' in my_list: print('And Sir Lancelot of Cam
elot') # note this

Building lists
Python supports several ways of building a list besides enumerating all elements

Hence, we can construct new lists by adding two (or more) lists
Very much like string concatenation and string multiplication. You will see that strings and lists have
a lot of properties in common.

*the action of linking things together in a series

odd = [1,3,5]
even = [2,4,6]
zeros = 3*[0] # List multiplication

lst = odd + even + zeros # List concatenation*
print(lst)

lst += [10]
print(lst)

for i in range(100,141,10):
 odd += [i]
print(odd)

In [49]: odd = [1,3,5]
even = [2,4,6]
zeros = 3*[0] # List multiplication

lst = odd + even + zeros # List concatenation*
print(lst)

In [51]: lst += [10]
print(lst)

Yes, there is a three
And not King Arthur

[1, 3, 5, 2, 4, 6, 0, 0, 0]

[1, 3, 5, 2, 4, 6, 0, 0, 0, 10, 10]

2020-09-22, 09:02session_6-lists

Page 13 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

In [52]: for i in range(100,141,10):
 odd += [i]
print(odd)

Example with list methods
The list class comes with several methods

All these methods manipulates (changes) the list content.

animals = ['dog', 'cat', 'rabbit', 'wolf']
animals.append('tiger') # Add 'tiger' at the end of the list
print(animals)

animals.insert(0,'fox') # Insert 'fox' at position 0
print(animals)

animals.remove('rabbit') # Remove first instance of 'rabbit'
print(animals)

animals.pop(1) # Remove element at position 1
print(animals)

animals.sort() # Sort alphabetically
print(animals)

[1, 3, 5, 100, 110, 120, 130, 140]

2020-09-22, 09:02session_6-lists

Page 14 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

In [53]: animals = ['dog', 'cat', 'rabbit', 'wolf']

animals.append('tiger') # Add 'tiger' at the end of the list
print(animals) # ['dog', 'cat', 'rabbit', 'wolf', 'tiger'
]

animals.insert(0,'fox') # Insert 'fox' at position 0
print(animals) # ['fox', 'dog', 'cat', 'rabbit', 'wolf',
'tiger']

animals.remove('rabbit') # Remove first instance of 'rabbit'
print(animals) # ['fox', 'dog', 'cat', 'wolf', 'tiger']

animals.pop(1) # Remove element at position 1
print(animals) # ['fox', 'cat', 'wolf', 'tiger']

animals.sort() # Sort alphabetically
print(animals) # ['cat', 'fox', 'tiger', 'wolf']

More list methods
List methods in addition to append, insert, remove, pop and sort

count() : Returns the number of elements in the list
index() : Returns the position where n first occurs
reverse() : Reverses the order of the elements in the list
copy() : Returns a copy of the list (a new list)
clear() : Removes all elements from the list
extend(list 2) : Appends list2 to this list

In [54]: animals.extend(animals)
print(animals)

In [55]: animals.count('cat')

In [57]: animals2 = animals

['dog', 'cat', 'rabbit', 'wolf', 'tiger']
['fox', 'dog', 'cat', 'rabbit', 'wolf', 'tiger']
['fox', 'dog', 'cat', 'wolf', 'tiger']
['fox', 'cat', 'wolf', 'tiger']
['cat', 'fox', 'tiger', 'wolf']

['cat', 'fox', 'tiger', 'wolf', 'cat', 'fox', 'tiger', 'wolf']

Out[55]: 2

2020-09-22, 09:02session_6-lists

Page 15 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

In [60]: animals.pop(0)

In [63]: animals2.pop(0)

In [64]: animals

In [65]: ## Why not just assign the list to a new name? Not copy???

animals_copy = animals.copy()

or ?

animals2 = animals

In []:

In [66]: print(len(animals_copy))
print(len(animals2))

In [67]: animals.pop(4)

In [68]: print(len(animals_copy))
print(len(animals2))

#By assignment you are getting different names for the same object.

Out[60]: 'cat'

Out[63]: 'fox'

Out[64]: ['tiger', 'wolf', 'cat', 'fox', 'tiger', 'wolf']

6
6

Out[67]: 'tiger'

6
5

2020-09-22, 09:02session_6-lists

Page 16 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Example starting with an empty list

We start with an empty list (numbers = []) and add new random numbers one at the time
(numbers.append(rn))
By overriding default reverse = True in sort we change the sorting order

from random import randint

numbers = [] # We start with an empty list
for i in range(10):
 rn = randint(1,100)
 numbers.append(rn) # Append one element at the time
print(numbers)

numbers.reverse() # Reverse order of element
print(numbers)

numbers.sort() # Sort in ascending order
print(numbers)

numbers.sort(reverse = True) # Sort in descending order
print(numbers)

In [69]: from random import randint

numbers = [] # We start with an empty list
for i in range(10):
 rn = randint(1,100)
 numbers.append(rn) # Append one element at the time
print('Random: \t', numbers) #

numbers.reverse() # Reverse order of element
print('Reverse: \t', numbers) #

numbers.sort() # Sort in ascending order
print('Ascending: \t', numbers) #

numbers.sort(reverse = True) # Sort in descending order
print('Descending: \t', numbers) #

Random: [1, 78, 86, 99, 74, 47, 45, 62, 44, 84]
Reverse: [84, 44, 62, 45, 47, 74, 99, 86, 78, 1]
Ascending: [1, 44, 45, 47, 62, 74, 78, 84, 86, 99]
Descending: [99, 86, 84, 78, 74, 62, 47, 45, 44, 1]

2020-09-22, 09:02session_6-lists

Page 17 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Slicing sequences

Sequences
Strings and lists are both sequences and have a lot in common

String

List

Something that works for strings often works for list.
However, certain things doesn't make sense in both cases, for example

split() doesn't make sense for a list
sum() doesn't make sense for a string

s = "abcdef"

print(len(s)) # 5
print(max(s)) # e
print(min(s)) # a
print(s[3]) # d
print(s[1:3]) # bc

for c in s:
 print(c, end=" ") # a b c d e
print()

a = [1,2,3,4,5,6]

print(len(a)) # 5
print(max(a)) # 5
print(min(a)) # 1
print(a[3]) # 4
print(a[1:3]) # [2, 3]

for n in a:
 print(n, end=" ") # 1 2 3 4 5
print()

2020-09-22, 09:02session_6-lists

Page 18 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Slicing sequences
Accessing certain parts using slicing works for all sequences

Accessing certain parts using slicing works for all sequences
Similar to range a slice looks like [start: stop: step]
... where all of them has certain default values
Default values: start = 0 , stop = len(...)+1 , step = 1
Remember that stop is not included when used
Example: Various slices for list a = [0,1,2,3,4,5,6,7,8,9]

Remember that it also works for strings
a[::-1] looks rather cryptic but is frequently used to reverse sequences

a[2:5] ==> [2, 3, 4]
a[2:9:2] ==> [2, 4, 6, 8]
a[6:2:-1] ==> [6, 5, 4, 3]
a[:6:] ==> [0, 1, 2, 3, 4, 5] (Uses default for start and step)
a[5::] ==> [5, 6, 7, 8, 9] (Uses default for stop and step
a[::] ==> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] (All default ==> list copy)
a[::-1] ==> [9, 8, 7, 6, 5, 4, 3, 2, 1, 0] (Reverse copy)

2020-09-22, 09:02session_6-lists

Page 19 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Example: Reversing strings
Two variants to reverse a string

Version 1: We build a new string by adding the characters in reverse order
Version 2: We apply the slice s[::-1] -> the entire string (start = 0 , stop = len(s)+1) in
reverse order (step = -1)

def reverse(s):
 rev = ""
 for c in s: # Add characters in reverse order
 rev = c + rev
 return rev

Program starts
s = "Python"
rev1 = reverse(s) # Call function reverse(s)
print(rev1)

rev2 = s[::-1] # Slicing
print(rev2)

In [70]: def reverse(s):
 rev = ""
 for c in s: # Add characters in reverse order
 rev = c + rev
 return rev

In [71]: reverse('Brother Maynard – bring forth the holy hand grenade!')

In [72]: 'Brother Maynard – bring forth the holy hand grenade!'[::-1]

Out[71]: '!edanerg dnah yloh eht htrof gnirb – dranyaM rehtorB'

Out[72]: '!edanerg dnah yloh eht htrof gnirb – dranyaM rehtorB'

2020-09-22, 09:02session_6-lists

Page 20 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Search using keyword in

Hence, the keyword in can also be used to search for elements in a sequence

def contains(s,l):
 for c in s:
 if c == l:
 return True
 return False

Program starts
s = "Python"
c = 'y'
if contains(s,c):
 print(s, "contains", c) # Output: Python contains y

if c in s: # Search for char c in string s
 print(s, "contains", c) # Output: Python contains y

a = [1,2,3,4,5]
n = 3
if n in a: # Search for number n in list a
 print(a, "contains", n) # Output: [1, 2, 3, 4, 5] contains 3

2020-09-22, 09:02session_6-lists

Page 21 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

In [73]: def contains(s,l):
 for c in s:
 if c == l:
 return True
 return False

Program starts
s = "Python"
c = 'y'
if contains(s,c):
 print(s, "contains", c) # Output: Python contains y

if c in s: # Search for char c in string s
 print(s, "contains", c) # Output: Python contains y

a = [1,2,3,4,5]
n = 3
if n in a: # Search for number n in list a
 print(a, "contains", n) # Output: [1, 2, 3, 4, 5] contains 3

In [75]: s = 'Hello'
if 'H' in s: print('Yes')

Convert ranges and strings to lists
The function list() can convert strings and ranges to lists

list() is a convertion function like int(), float(), str() , and bool()
list(x) tries to convert x into a list
list(...) works for strings and ranges and a few other contsructs

a = list("Nobody expects the Spanish Inquisition")
print(a, type(a))

b = list(range(1,6))
print(b, type(b))

Python contains y
Python contains y
[1, 2, 3, 4, 5] contains 3

Yes

2020-09-22, 09:02session_6-lists

Page 22 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

In [76]: a = list("Nobody expects the Spanish Inquisition")
print(a, type(a)) # Output: ['H', 'e', 'l', 'l', 'o'] <class
'list'>

In [77]: b = list(range(1,6))
print(b, type(b))

Splitting strings using split()

Usage

We can split a string into a list of words using the string method \verb+split()+
split() uses by default whitespace (" ") to separate words, ...

... but can be configured to use other strings (e.g. split(","))

s = input("Enter a few words: ")
words = s.split()
print(words)

words = input("Enter a few comma-separated words: ").split(",")
print(words)

Enter a few words: Spam! Spam! Spam! Spam! Spam! Spam!
['Spam!', 'Spam!', 'Spam!', 'Spam!', 'Spam!', 'Spam!']

Enter a few comma-separated words: Egg,Sausage,Spam,Egg,Spam
['Egg', 'Sausage', 'Spam', 'Egg', 'Spam']

In [78]: s = input("Enter a few words: ")
words = s.split()
print(words)

words = input("Enter a few comma-separated words: ").split(",")
print(words)

['N', 'o', 'b', 'o', 'd', 'y', ' ', 'e', 'x', 'p', 'e', 'c', 't',
's', ' ', 't', 'h', 'e', ' ', 'S', 'p', 'a', 'n', 'i', 's', 'h', '
', 'I', 'n', 'q', 'u', 'i', 's', 'i', 't', 'i', 'o', 'n'] <class '
list'>

[1, 2, 3, 4, 5] <class 'list'>

Enter a few words: Här skriver jag olika saker
['Här', 'skriver', 'jag', 'olika', 'saker']
Enter a few comma-separated words: Med,komma,tecken
['Med', 'komma', 'tecken']

2020-09-22, 09:02session_6-lists

Page 23 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

List comprehension

Applying functions to lists
Three variants for applying function to all elements of a list

def square_list(a):
 sq = []
 for n in a:
 sq.append(n*n)
 return sq

def square(x): return x*x

Program starts
lst = [1,2,3,4,5]
sq = square_list(lst)
print(sq) # Output: [1, 4, 9, 16, 25]

Using list comprehensions
sq = [square(p) for p in lst]
print(sq) # Output: [1, 4, 9, 16, 25]

sq = [p*p for p in lst]
print(sq) # Output: [1, 4, 9, 16, 25]

!(") = "2

In [79]: def square_list(a):
 sq = []
 for n in a:
 sq.append(n*n)
 return sq

In [89]: square(10)

In [88]: [square(p) for p in min_nummer_lista]

In [91]: [x**x for x in min_nummer_lista[:-1]]

Out[89]: 100

Out[88]: [4, 16, 36, 100]

Out[91]: [4, 256, 46656]

2020-09-22, 09:02session_6-lists

Page 24 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

In []:

In []: lst = [1,2,3,4,5]

print(square_list(lst))

##

sq = square_list(lst)
print(sq)

In []: # Using list comprehensions
sq = [square(p) for p in lst]
print(sq)

In []: sq = [p*p for p in lst]
print(sq)

List comprehensions

[n*n for n in lst] is a list comprehension
We apply the function n*n on all elements in list lst
The result is a new list
They are a compact version of iterating over all elements and applying the function on each element.

from math import sqrt

lst = list(range(1,6))
print(lst) # [1, 2, 3, 4, 5]

square = [n*n for n in lst]
print(square) # [1, 4, 9, 16, 25]

root = [round(sqrt(n),2) for n in lst]
print(root)

2020-09-22, 09:02session_6-lists

Page 25 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Advanced list comprehensions

Output [7, 14, 21, 28, 35, 42, 49]
[49, 81, 100]

We can add an \verb+if+ clause to list comprehensions to filter the content
Only elements fulfilling the if criteria are added to list
type(x) == int -> type is an entity that can be used in boolean expressions

Integers dividable by 7 in range 1 to 50
div_7 = [n for n in range(1,51) if n%7==0]
print(div_7)

Square all integers, remove everything else
lst = ["ABC", 23.4, 7, True, 9, "xyz", 10]
only_ints = [pow(x,2) for x in lst if type(x) == int]
print(only_ints)

In [92]: [n for n in range(1,51) if n%7==0]

In []: # Square all integers, remove everything else
lst = ["ABC", 23.4, 7, True, 9, "xyz", 10]
only_ints = [pow(x,2) for x in lst if type(x) == int]
print(only_ints)

Out[92]: [7, 14, 21, 28, 35, 42, 49]

2020-09-22, 09:02session_6-lists

Page 26 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Read multiple integers

Usage

1. We read input as a single string "23 100 65 97 8 12"+
2. We split the string into a list of words ["23","100","65","97","8","12"]
3. We convert each word (e.g. "23") to an integer (e.g. 23)
4. We find smallest/largest element by applying min/max on the integer list

Read multiple space separated integers from keyboard
text = input("Enter integers separated by one whitespace: ")
words = text.split()
ints = [int(w) for w in words]

print(f"Largest number is {max(ints)}, smallest is {min(ints)}")

Enter integers separated by one whitespace: 23 100 65 97 8 12
Largest number is 100, smallest is 8

In [93]: # Read multiple space separated integers from keyboard
text = input("Enter integers separated by one whitespace: ")
words = text.split()
ints = [int(w) for w in words]

print(f"Largest number is {max(ints)}, smallest is {min(ints)}")

Enter integers separated by one whitespace: 23 100 65 97 8 12
Largest number is 100, smallest is 8

2020-09-22, 09:02session_6-lists

Page 27 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

Two-dimensional lists (Matrix)

A two-dimensional list is called a matrix
It is a list containing other lists
We access individual elements using a[0][2]

A two-dimensional list
a = [[1,2,3], [4,5,6], [7,8,9]] # Format is 3x3

print(a) # [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
print(a[0][2]) # 1st row, 3rd column ==> 3
print(a[1]) # Entire 2nd row ==> [4,5,6]

a[2][2] = 99 # Replace 9 with 99
print(a) # [[1, 2, 3], [4, 5, 6], [7, 8, 99]]

A 4x3 matrix with only 1 elements
b = [4*[1], 4*[1], 4*[1]]
print(b) # [[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]

In []: a = [[1,2,3], [4,5,6], [7,8,9]] # Format is 3x3

In []: a[0]

Simple list programming
Exercise: Write a program random_elements.py that:

Creates a list containing 10 random floats in interval [-10,10]
Converts the list to an integer list (correctly rounded off)
Prints the smallest and largest elements in the integer list

2020-09-22, 09:02session_6-lists

Page 28 of 28http://localhost:8888/nbconvert/html/courses/1DV501/session_6-lists.ipynb?download=false

In []: import random

A list with ten random floats
floats = []
for i in range(10):
 rnd = random.uniform(-10,10)
 floats.append(rnd)

Correctly rounded off integers
ints = []
for f in floats:
 ints.append(round(f)) # NOTE We use append() repeatedly to b
uild our lists.

Print largest and smallest
lrg = max(ints)
sml = min(ints)
print(f"\nLargest element is {lrg}, smallest is {sml}")

A much shorter version using list comprehensions
(Version 2)

In []: import random as rd

Ten random floats
floats = [rd.uniform(-10,10) for i in range(10)]

Rounded of integers
ints = [round(f) for f in floats]

Print largest and smallest
print(f"\nLargest element is {max(ints)}, smallest is {min(ints)}")

In []:

