
Iterations and library functions

1DV501 - Introduction to Programming

Jonas Lundberg, office B3024

Jonas.Lundberg@lnu.se

The slides are available in Moodle

September 14, 2020

Computer Science

Iterations and library functions 1(28)

Today ...

I Iterations (while and for)

I Built-in and library functions
I A few built-in functions
I The math module
I The random module

Reading instructions: Sections 5.1-5.5, 6.1-6.4, 6.6

Computer Science

Iterations and library functions 2(28)

Iterations
Iteration (or loop) ⇒ repeat the same sequence of statements multiple times.

I In Python: while- and for-statements

I Example: while

Print 1 to 10 using while

n = 1

while n <= 10:

print(n, end=' ') # No line-break

n += 1

print() # Add line break

Output: 1 2 3 4 5 6 7 8 9 10

I Example: for

Print 1 to 10 using for

for i in range(1,11):

print(i, end=' ') # No line-break

print() # Add line break

Output: 1 2 3 4 5 6 7 8 9 10

Reading instructions: Sections 5.1-5.5, 6.1-6.8

While Computer Science

Iterations and library functions 3(28)

The while Statement

while "Test Condition":

"Statements"

I The code "Statements" will be
executed as long as
"Test Expression" is True

I The code in "Statements" must be
intended to be a part of the while
statement

I "Statements" false ⇒ execution
jumps to the code after the while
statement

While Computer Science

Iterations and library functions 4(28)

while Examples

Print 1 to 10 using while

n = 1

while n <= 10:

print(n, end=' ') # No break

n += 1

print() # Add line-break

Output: 1 2 3 4 5 6 7 8 9 10

Find smallest N such

that 1+2+3+...+N > 100

s = 0 # sum

N = 0

while s <= 100:

N = N + 1 # N = 1,2,3,4, ...

s = s + N # s = 1,3,6,10, ...

print("Smallest N is", N)

I Repeat certain statements (the loop body) as long as a condition is false

I The 2nd example (Smallest N) shows when to use a while statement,
when we don’t know how many iterations that are needed but we know
when to stop.

I The 1st example is better handled by a for statement (coming soon)
since we know exactly how many iterations that are needed (10).

While Computer Science

Iterations and library functions 5(28)

Nestled examples
Nestled ⇒ statements within statement

Numbers dividable by 7 in range 1 to 100

n = 1

while n <= 100:

if n % 7 == 0: # Dividable by 7?

print(n, end=' ') # 7 14 21 ...

n += 1

print() # Add final line-break

Do something while input is yes (y or Y)

entry = 'y'

while entry != 'N' and entry != 'n':

entry = input("Enter Y to continue or N to quit: ")

if entry == 'Y' or entry == 'y':

print("Hello") # Do something!

elif entry != 'N' and entry != 'n':

print(entry, "is not a valid input")

print("Done!")
While Computer Science

Iterations and library functions 6(28)

Infinite loops

while True:

print("Hello")

I while True: ⇒ loop never stops

I Q: What happens when executed?

I A: It just runs and runs ...
(You stop it by Ctrl-C in the
Terminal window.)

n = 1

str = "" # empty string

while n < 10 or n > 0:

n = n + 1

str = str + "Hello"

I A logical error

I n < 10 or n > 0 is True for any n

I Program will crash since the string
will get larger and larger and we will
eventually run out of memory.

Infinite loops are often (but not always) a result of a logical error. They are sometimes

useful when you want to do something (e.g. a sensor measuring the temperature)

without ever stopping. They do not harm your computer in any way.

While Computer Science

Iterations and library functions 7(28)

The for Statement

Print 0,2,4,6,8,10

for i in range(0,11,2):

print(i, end=' ')

print()

Output: 0 2 4 6 8 10

Countdown from 10

for i in range(10,0,-1):

print(i, end=' ')

print()

Output: 10 9 8 7 6 5 4 3 2 1

I for i in range(0,11,2) ⇒ for each integer i in the range 0 to 10
using step size 2.

I Notice: The upper limit 11 is not included whereas the lower limit is.

I The variable i is called the for counter

For Computer Science

Iterations and library functions 8(28)

The range function

The range function generates integer sequences and is rather powerful.
It comes in three versions:

I range(stop): Considers by default the starting point as zero

I range(start, stop): From start to stop-1 with step size 1

I range(start, stop, step): From start to stop-1 with step size step

Examples

I range(10) ⇒ 0,1,2,3,4,5,6,7,8,9

I range(1, 10) ⇒ 1,2,3,4,5,6,7,8,9

I range(1, 10, 2) ⇒ 1,3,5,7,9

I range(2, 10, 2) ⇒ 2,4,6,8

I range(10, 0, -2) ⇒ 10,8,6,4,2

Notice: Rather straight forward except that the stop value is not included.

For Computer Science

Iterations and library functions 9(28)

The keywords break and continue

I break and continue are used to jump out of a loop at an arbitrary
position.

I Example

while bool_expr:

...

if bool_expr:

break # End the loop, jump to next_statement

if bool_expr:

continue # End this iteration, jump to while bool_expr:

...

}

next_statement

I break and continue are considered to make the code more difficult to
understand ⇒ use them with care!

For Computer Science

Iterations and library functions 10(28)

Is it a prime number? (Part 1)
N > 1 is a prime number ⇒ Not dividable by any number in range 2 to N − 1

Problem: Write a program that checks if a given N is a prime number

Basic solution idea
I Error message if N < 2

I For each integer i in range 2 to N − 1
I N dividable by i ⇒ N is not a prime, interrupt loop

I Not dividable by any i ⇒ N is a prime

Example runs

Enter an integer larger than 1: 47

47 is a prime number

Enter an integer larger than 1: 49

49 is NOT a prime number. It is dividable by 7

Enter an integer larger than 1: -7

Please follow the instructions!
For Computer Science

Iterations and library functions 11(28)

Is it a prime number? (Part 2)

Check if input is a prime number

n = int(input("Enter an integer larger than 1: "))

if n < 2: # Must be larger than 1

print("Please follow the instructions!")

else:

prime = True

for i in range(2,n): # Check if prime

if n % i == 0:

prime = False

break # Jump from loop when not prime

if prime: # Present result

print(n, "is a prime number")

else:

print(n, "is NOT a prime number. It is dividable by ",i)

For Computer Science

Iterations and library functions 12(28)

Nestled Statements
Print multiplication table

n = int(input("Please enter a positive integer: "))

if n < 1:

print("Input must be positive!")

else:

print("Multiplication table for ", n)

for i in range(1,n+1):

for j in range(1, n+1):

print(i, " x ", j, " = ", i*j)

Please enter a positive integer: 3 (Example run)

Multiplication table for 3

1 x 1 = 1

1 x 2 = 2

1 x 3 = 3

2 x 1 = 2

2 x 2 = 4

2 x 3 = 6

3 x 1 = 3

3 x 2 = 6

3 x 3 = 9
For Computer Science

Iterations and library functions 13(28)

Problem solving with if, while, and for

I Understanding each control statement by itself is rather easy

I Solving problem requiring only one such statement is also often rather easy

I However, many problems require multiple nestled control statements

I Solution with nestled statements ⇒ much harder ⇒ much training needed

I We have a large number of such problems in Assignment 2

Assignment 2 is time consuming ⇒ Get started!

For Computer Science

Iterations and library functions 14(28)

Example: Count A

Write a program count A.py that reads a string from the keyboard and then prints
how many ’a’ and ’A’ the string contains. An example of what an execution might
look like:

Provide a line of text: All cars got the highest safety grading A.

Number of 'a': 3

Number of 'A': 2

Sketch of a Solution

1. Read a line of text ⇒ a string text

2. For each character c in text

I if c = 'A' ⇒ increase counter nA by 1
I else if c = 'a' ⇒ ⇒ increase counter na by 1

3. Print result ⇒ Print nA and na

Hint: I should have waited with 1 (read line of text) until the end. Why?

For Computer Science

Iterations and library functions 15(28)

Solution - count A.py

Count number of 'A' and 'a' in a string

text = input("Please provide a line of text: ")

na, nA = 0, 0

for c in text:

if c == 'a':

na += 1

elif c == 'A':

nA += 1

print("\nNumber of 'a': ", na)

print("Number of 'A': ", nA)

Notice: Iterating over all characters in a string is simple using a for statement

text = "This is a string"

for c in text:

"Do something with character c"

For Computer Science

Iterations and library functions 16(28)

A 10 minute break?

For Computer Science

Iterations and library functions 17(28)

Using Functions

import random

Print random numbers

n = int (input("Number of random numers: "))

print(n, "random numbers: ", end=" ")

for i in range(n): # n iterations

r = random.randint(1,1000)

print(r, end=" ")

print()

I The program above uses 5 different functions

I Built-in functions: input(), int(), print(), range()

These functions are always available

I Library functions: randint()

randint belongs to the module random

We will present a number of functions that might me useful in your assignments in the

following slides. Both built-in functions (always available) and library functions

(requires import).
Using functions Computer Science

Iterations and library functions 18(28)

Built-in Functions
Built-in functions are always available ⇒ no import needed

About a third of the functions above will be presented and used in this course

Using functions Computer Science

Iterations and library functions 19(28)

Common Built-in Functions

a, b, c, = 1.0, -2.2, 3.14

print("Values:",a, b, c, sep=", ") # 1.0, -2.2, 3.14

print("Maximum:", max(a,b,c)) # 3.14

print("Minimum:", min(a,b,c)) # -2.2

print("Absolute value:", abs(b)) # 2.2

print("Round off:", round(c)) # 3

print("Hello", len("Hello")) # Hello 5

print(type(a), type("Hello")) # <class 'float'> <class 'str'>

I max(), min(), abs(), round() ⇒ see example above

I float(), int(), bool(), str() ⇒ type conversion

I len("Hello") ⇒ length of something. In this case a string

I type() ⇒ current type of variable or expression

Using functions Computer Science

Iterations and library functions 20(28)

The math Module

import math

pi = math.pi # Pi as a float

print(pi) # 3.141592653589793

print(math.degrees(pi/3)) # 60

print(math.cos(pi/3)) # 0.5

print(math.sqrt(2)) # 1.4142135623730951

print(math.pow(4,3)) # 64.0

print(math.floor(pi), math.ceil(pi)) # 3 4

print(math.gcd(15,20)) # 5

I math is an external module ⇒ must be imported

I Trigonometric functions: sin(), cos(), tan(), asin(), acos(), atan(),
They work with radians by default

I math.degrees(pi/3) ⇒ convert radians to degrees

I sqrt(x), pow(x,p) ⇒ square root of x, x raised to the power of p

I floor(x), ceil(x) ⇒ Rounds off x downwards/upwards to the nearest integer

I gcd(n,p) ⇒ Greatest common devisor

Using functions Computer Science

Iterations and library functions 21(28)

Import modules and functions
Three equivalent import approaches

import math # Make math module available

print(math.sqrt(2)) # Must make reference to math module

print(math.gcd(10,15))

from math import sqrt, gcd # Make sqrt and gcd from math available

print(sqrt(2)) # No math reference required

print(gcd(10,15))

from math import * # Make all functions in math available

print(sqrt(2)) # No math reference required

print(gcd(10,15))

Use 1st approach when multiple math functions are needed.
Use 2nd approach when only 1-2 functions are needed
Avoid 3rd approach since name collisions are more likely

Using functions Computer Science

Iterations and library functions 22(28)

Short names for imported modules

import random # Make random module available

print(random.randint(0,100)) # Random int in [0,100]

print(random.uniform(20,30)) # Random float in [20,30]

import random as rd # Give random the name "rd"

print(rd.randint(0,100)) # Use "rd" to reference random

print(rd.uniform(20,30))

Use 1st approach when module name is short (e.g. math)
Use 2nd approach when module name is lengthy (e.g. matplotlib)

Using functions Computer Science

Iterations and library functions 23(28)

Terminate execution using exit()
Handle initial check using if-else

n = int(input("Enter a positive integer: "))

if n < 1:

print("Input must be positive")

else:

"Do something with n ... ==> main part of program"

Handle initial check using if and sys.exit()

import sys

n = int(input("Enter a positive integer: "))

if n < 1:

print("Input must be positive")

sys.exit(). # Terminates program execution

"Do something with n ... ==> main part of program."

Advantage: Avoid having to indent main part of program. Disadvantage: exit()

terminates program prematurely ⇒ sometimes a bit harder to understand.

Using functions Computer Science

Iterations and library functions 24(28)

Example: Stupid Encryption

A very simple (stupid?) way to encrypt a text would be to just shift each letter one
step in the alphabet. That is, replace all letters in the text with the next letter in the
alphabet

a --> b, b --> c, ... , y --> z, z --> a

A --> B, B --> C, ... , Y --> Z, Z --> A

All non-letters, for example digits, ? ,!, %, and whitespace, are left unchanged.

Exercise: Write a program stupidencryption.py that reads a line of text from the
user and presents an encrypted version of the text according to the encryption method
outlined above. An execution might look like this:

Provide a line of text: Was it a rat I saw?

Encrypted Text: Xbt ju b sbu J tbx?

Hints: A-Z have ASCII codes in range [65,90], a-z are in range [97,122], built-in

function ord() gives the ASCII code for a character, and function chr() gives the

character for an ASCII.

Basic idea: Convert each letter to ASCII, add 1, and convert back to character

Using functions Computer Science

Iterations and library functions 25(28)

stupidencryption.py

str = "abcdefghijklmnopqrstuvwxyz 123 ABCDEFGHIJKLMNOPQRSTUVWXYZ.;?"

str = input("Provide a line of text: ")

result = ""

for c in str:

asc = ord(c) # ASCII code

if c == 'z': # z --> a

result += 'a'

elif c == 'Z': # Z --> A

result += 'A'

elif 65 <= asc <= 90: # Upper case

result += chr(asc+1)

elif 97 <= asc <= 122: # Lower case

result += chr(asc+1)

else: # Handle non-characters

result += c

print("Encrypted text:", result)

Using functions Computer Science

Iterations and library functions 26(28)

Programming: Old Java-test Exercise

Write a Java program Square.java that first reads any integer (higher than or
equal to 3) from the keyboard and then prints a non-filled square of the type
presented below. An execution might look like this:

Provide an integer 3 or higher: 5

The square for number 5

* *

* *

* *

An error message should be given, and the program should terminate, if the
user-provided integer value is below three.

Let us solve the problem in Python!

Using functions Computer Science

Iterations and library functions 27(28)

Solution - square.py

sz = int (input("Enter an integer 3 or higher: "))

if sz < 3: # Check input

print("The size must 3 or higher")

else:

Two types of square lines

stars = ""

for i in range(sz):

stars += "*"

line = "*"

for i in range(sz-2):

line += " "

line += "*"

Print square

print("\nThe square for number", sz)

print(stars)

for i in range(sz-2):

print(line)

print(stars)

Using functions Computer Science

Iterations and library functions 28(28)

	While
	For
	Using functions

