Linnaeus Universityﬁ'j?*

Iterations and library functions
1DV501 - Introduction to Programming

Jonas Lundberg, office B3024

Jonas.Lundberg@lnu.se

The slides are available in Moodle

September 14, 2020

Computer Science

Iterations and library functions 1(28)

Linnaeus University?:is"*

Today ...

> lterations (while and for)
» Built-in and library functions

» A few built-in functions
» The math module
» The random module

Reading instructions: Sections 5.1-5.5, 6.1-6.4, 6.6

Computer Science

Iterations and library functions 2(28)

Iterations

Linnaeus Universityﬁ'j?*

Iteration (or loop) = repeat the same sequence of statements multiple times.

» In Python: while- and for-statements

» Example: while

Print 1 to 10 using while
n=1
while n <= 10:

print(n, end=' ') # No
n +=1
print () # Add line break

Output: 12345678910
» Example: for

Print 1 to 10 using for

for i in range(1,11):
print(i, end=' ') # No

print() # Add line break

Output: 12345678910

While

Iterations and library functions

line-break

line-break

Computer Science
3(28)

The while Statement

while "Test Condition":
"Statements"

P> The code "Statements" will be
executed as long as
"Test Expression" is True

P> The code in "Statements" must be
intended to be a part of the while
statement

> "Statements" false = execution
jumps to the code after the while
statement

While

Iterations and library functions

Test
Expression

i

Statements

Linnaeus University?:f"*

Computer Science

4(28)

Linnaeus Universityﬁ'p*

while Examples

Find smallest N such

that 1+2+3+...+N > 100

s =0 # sum

N=20

while s <= 100:
N N+1 #N=1,2,3,4,
s=s+N #s 1,3,6,10,

print("Smallest N is", N)

Print 1 to 10 using while
n=1
while n <= 10:
print(n, end=' ') # No break
n +=1
print () # Add line-break

Output: 12345678910

> Repeat certain statements (the loop body) as long as a condition is false

» The 2nd example (Smallest N) shows when to use a while statement,
when we don't know how many iterations that are needed but we know
when to stop.

> The 1st example is better handled by a for statement (coming soon)
since we know exactly how many iterations that are needed (10).

While Computer Science

Iterations and library functions 5(28)

Linnaeus University%gj

Nestled examples
Nestled = statements within statement

Numbers dividable by 7 in range 1 to 100
n=1
while n <= 100:
if n % 7 == 0: # Dividable by 7?
print(n, end=' ') # 7 14 21
n+=1
print () # Add final line-break

Do something while input is yes (y or Y)
entry = 'y'
while entry != 'N' and entry != 'n':
entry = input("Enter Y to continue or N to quit: ")
if entry == 'Y' or entry == 'y':
print ("Hello") # Do something!
elif entry != 'N' and entry != 'n':
print(entry, "is not a valid input")

print ("Done!")

While Computer Science

6(28)

Iterations and library functions

Infinite loops

while True:
print ("Hello")

> while True: = loop never stops
> Q: What happens when executed?

> A: It just runs and runs ...
(You stop it by Ctrl-C in the
Terminal window.)

Linnaeus University?:f"*

n=1
str = "" # empty string
while n < 10 or n > O:
n=n-+1
str = str + "Hello"

A logical error
n < 10 or n > 0 is True for any n

Program will crash since the string
will get larger and larger and we will
eventually run out of memory.

Infinite loops are often (but not always) a result of a logical error. They are sometimes

useful when you want to do something (e.g. a sensor measuring the temperature)

without ever stopping. They do not harm your computer in any way.

While

Iterations and library functions

Computer Science

7(28)

Linnaeus Universityﬁf"*

The for Statement

Print 0,2,4,6,8,10 # Countdown from 10

for i in range(0,11,2): for i in range(10,0,-1):
print(i, end=' ') print(i, end=' ')

print) print ()

Output: 02468 10 Output: 10987654321

> for i in range(0,11,2) = for each integer i in the range 0 to 10
using step size 2.

» Notice: The upper limit 11 is not included whereas the lower limit is.

» The variable i is called the for counter

For Computer Science

Iterations and library functions 8(28)

Linnaeus University?:f"*

The range function

The range function generates integer sequences and is rather powerful.
It comes in three versions:

> range(stop): Considers by default the starting point as zero
> range(start, stop): From start to stop-1 with step size 1

> range(start, stop, step): From start to stop-1 with step size step

Examples
> range(10) = 0,1,2,3,4,5,6,7,8,9
» range(1, 10) = 1,2,3,4,5,6,7,8,9
» range(1, 10, 2) = 1,3,5,7,9
> range(2, 10, 2) = 2,4,6,8
> range(10, 0, -2) = 10,8,6,4,2

Notice: Rather straight forward except that the stop value is not included.

For Computer Science

Iterations and library functions 9(28)

Linnaeus University?:'ﬁ"*

The keywords break and continue

> break and continue are used to jump out of a loop at an arbitrary
position.

> Example
while bool_expr:

if bool_expr:
break # End the loop, jump to next_statement

if bool_expr:
continue # End this iteration, jump to while bool_expr:

}
next_statement

> break and continue are considered to make the code more difficult to
understand = use them with care!

For Computer Science

Iterations and library functions 10(28)

For

Linnaeus University?:'r:"*

Is it a prime number? (Part 1)

N > 1 is a prime number = Not dividable by any number in range 2 to N — 1
Problem: Write a program that checks if a given N is a prime number

Basic solution idea
> Error message if N < 2
> For each integer i in range 2to N — 1
» N dividable by i = N is not a prime, interrupt loop
> Not dividable by any i = N is a prime

Example runs

Enter an integer larger than 1: 47
47 is a prime number

Enter an integer larger than 1: 49
49 is NOT a prime number. It is dividable by 7

Enter an integer larger than 1: -7
Please follow the instructions!

Computer Science

Iterations and library functions 11(28)

Linnaeus Universitygf'*

Is it a prime number? (Part 2)

Check ©f input 7s a prime number
n = int(input("Enter an integer larger than 1: "))

if n < 2: # Must be larger than 1

print("Please follow the instructions!")
else:

prime = True
for i in range(2,n): # Check if prime
if n % i == 0:

prime = False

break # Jump from loop when mot prime
if prime: # Present result
print(n, "is a prime number")

else:

print(n, "is NOT a prime number. It is dividable by ",i)

For Computer Science

Iterations and library functions 12(28)

For

Nestled Statements

Print multiplication table
n = int(input("Please enter a positive integer: "))

if n < 1:
print ("Input must be positive!")
else:
print("Multiplication table for ", n)
for i in range(l,n+1):
for j in range(l, nt+1):

Linnaeus Universityﬁ'i?*

prlnt(i’ n X ll’ j) n = ||’ i*j)

Please enter a positive integer: 3 (Example run)
Multiplication table for 3

1 x 1 =1

1 x 2 = 2

1 x 3 = 3

2 x 1 = 2

2 x 2 = 4

2 x 3 = 6

3 x 1 = 3

3 x 2 = 6

2] v el = Qa

Iterations and library functions

Computer Science

13(28)

Linnaeus University?:'r:"*

Problem solving with if, while, and for

Understanding each control statement by itself is rather easy

Solving problem requiring only one such statement is also often rather easy

>
>

» However, many problems require multiple nestled control statements

» Solution with nestled statements = much harder = much training needed
>

We have a large number of such problems in Assignment 2

Assignment 2 is time consuming = Get started!

For Computer Science

Iterations and library functions 14(28)

Linnaeus University?:'ﬁ"*

Example: Count A

Write a program count_A.py that reads a string from the keyboard and then prints
how many 'a’ and 'A’ the string contains. An example of what an execution might

look like:

Provide a line of text: All cars got the highest safety grading A.
Number of 'a': 3
Number of 'A': 2

Sketch of a Solution
1. Read a line of text = a string text
2. For each character c in text

> if c = 'A' = increase counter nA by 1
» else if c = 'a' = = increase counter na by 1

3. Print result = Print nA and na

Hint: | should have waited with 1 (read line of text) until the end. Why?

Computer Science

15(28)

For

Iterations and library functions

Linnaeus Universityﬁ'i?*

Solution - count_A.py

Count number of 'A' and 'a' in a string
text = input("Please provide a line of text: ")

na, nA = 0, 0

for c in text:

if ¢ == 'a':
na += 1
elif c == 'A':
nA += 1

print ("\nNumber of 'a': ", na)
print ("Number of 'A': ", nA)

Notice: Iterating over all characters in a string is simple using a for statement

text = "This is a string"
for ¢ in text:
"Do something with character c"

For Computer Science

Iterations and library functions 16(28)

Linnaeus Universityz'r;*

A 10 minute break?

For Computer Science

Iterations and library functions 17(28)

Using Functions

import random

Print random numbers
n =

print(n, "random numbers: ",
for i in range(n):

end=" ||)
n iterations

r = random.randint(1,1000)
print(r, end=" ")
print ()

> The program above uses 5 different functions

int (input("Number of random numers:

Linnaeus University?:f"*

u))

» Built-in functions: input(), int(), print(), range()

These functions are always available

> Library functions: randint()
randint belongs to the module random

We will present a number of functions that might me useful in your assignments in the
following slides. Both built-in functions (always available) and library functions

(requires import).

Using functions

Iterations and library functions

Computer Science

18(28)

Built-in Functions

Built-in functions are always available = no import needed

abs()

all()

any ()
aseii()
bin()

bool ()
breakpoint ()
bytearray()
bytes()
callable()
chr()
classmethod ()
compile()

complex()

delattr()
dict()
dir()
divmod()
enumerate()
eval()
exec()
filter()
float()
format.()
frozenset ()
getattr()
globals()

hasattr()

Built-in Func-
tions

hash()
help()

hex()

id()

input()
int()
isinstance()
issubclass()
iter()

len()

list()
locals()
map()

max()

memoryview()
min()

next ()
object()
oct()
open()
ord()

pow ()
print()
property ()
range()
repr()
reversed()

round()

Linnaeus Universityﬁg*

set()
setattr()
slice()
sorted()
staticmethod()
str()

sum()

super ()
tuple()

type()

vars()

zip()

_import__()

About a third of the functions above will be presented and used in this course

Using functions

Iterations and library functions

Computer Science

19(28)

Linnaeus Universityﬁ'i?*

Common Built-in Functions

a, b, c, = 1.0, -2.2, 3.14

print("Values:",a, b, c, sep=", ") #1.0, 2.2, 3.14
print("Maximum:", max(a,b,c)) # 3.14

print("Minimum:", min(a,b,c)) # -2.2

print("Absolute value:", abs(b)) # 2.2

print ("Round off:", round(c)) # 3

print("Hello", len("Hello")) # Hello 5

print(type(a), type("Hello")) # <class 'float'> <class 'str'>

max(), min(), abs(), round() = see example above
float(), int(), bool(), str() = type conversion
len("Hello") => length of something. In this case a string

vVvyVvVvyy

type () = current type of variable or expression

Using functions Computer Science

Iterations and library functions 20(28)

The math Module

import math
pi = math.pi

print(pi)
print(math.degrees(pi/3))
print (math.cos(pi/3))

print(math.sqrt(2))

Linnaeus University?:f"*

Pi as a float

3.141592653589793
60

#0.5

1.4142135623730951

print(math.pow(4,3)) # 64.0
print(math.floor(pi), math.ceil(pi)) #3 4
print(math.gecd(15,20)) #5

> math is an external module = must be imported

v

Trigonometric functions: sin(), cos(), tan(), asin(), acos(), atan(),

They work with radians by default

vvyyypwy

Using functions

Iterations and library functions

math.degrees(pi/3) = convert radians to degrees
sqrt(x), pow(x,p) = square root of x, x raised to the power of p
floor(x), ceil(x) = Rounds off x downwards/upwards to the nearest integer

gcd(n,p) = Greatest common devisor

Computer Science

21(28)

Linnaeus Universityﬁ'j?*

Import modules and functions

Three equivalent import approaches

import math # Make math module avatilable

print(math.sqrt(2)) # Must make reference to math module
print(math.gcd(10,15))

from math import sqrt, gcd # Make sqrt and gcd from math available

print(sqrt(2)) # No math reference required
print(gecd(10,15))

from math import * # Make all functions in math available

print(sqrt(2)) # No math reference required
print(gecd(10,15))

Use 1st approach when multiple math functions are needed.
Use 2nd approach when only 1-2 functions are needed
Avoid 3rd approach since name collisions are more likely

Using functions Computer Science

Iterations and library functions 22(28)

Linnaeus Universityﬁ'p*

Short names for imported modules

import random # Make random module avatilable
print(random.randint(0,100)) # Random int in [0,100]
print(random.uniform(20,30)) # Random float in [20,30]
import random as rd # Give random the name "rd"

print(rd.randint(0,100)) # Use "rd" to reference random
print(rd.uniform(20,30))

Use 1st approach when module name is short (e.g. math)
Use 2nd approach when module name is lengthy (e.g. matplotlib)

Using functions Computer Science

Iterations and library functions 23(28)

Linnaeus Universityﬁ'p*

Terminate execution using exit ()
Handle initial check using if-else

n = int(input("Enter a positive integer: "))

if n < 1:
print ("Input must be positive")
else:
"Do something with n ... ==> main part of program"

Handle initial check using if and sys.exit()

import sys

n = int(input("Enter a positive integer: "))

if n < 1:

print ("Input must be positive")

sys.exit(). # Terminates program execution
"Do something with n ... ==> main part of program."

Advantage: Avoid having to indent main part of program. Disadvantage: exit ()

terminates program prematurely = sometimes a bit harder to understand.

Using functions Computer Science

Iterations and library functions 24(28)

Linnaeus University?:'ﬁ"*

Example: Stupid Encryption

A very simple (stupid?) way to encrypt a text would be to just shift each letter one
step in the alphabet. That is, replace all letters in the text with the next letter in the

alphabet
a-->Db, b -->¢c, , Yy -—> 2z, z-->a
A -->B, B-->C, LY -=>Z,Z -> A

All non-letters, for example digits, ? ,!, %, and whitespace, are left unchanged.

Exercise: Write a program stupidencryption.py that reads a line of text from the
user and presents an encrypted version of the text according to the encryption method
outlined above. An execution might look like this:

Provide a line of text: Was it a rat I saw?
Encrypted Text: Xbt ju b sbu J tbx?

Hints: A-Z have ASCII codes in range [65,90], a-z are in range [97,122], built-in
function ord() gives the ASCII code for a character, and function chr() gives the
character for an ASCII.

Basic idea: Convert each letter to ASCII, add 1, and convert back to character

Using functions Computer Science

Iterations and library functions 25(28)

Linnaeus Universityglﬁ

stupidencryption.py

str = "abcdefghijklmnopgrstuvwzyz 123 ABCDEFGHIJKLMNOPQRSTUVWXYZ. ;2"
str = input("Provide a line of text: ")

result = ""
for ¢ in str:
asc = ord(c) # ASCII code

if ¢ == 'z': # 2z ——> a
result += 'a'
elif ¢ == '2Z': #Z -—> A

result += 'A'

elif 65 <= asc <= 90: # Upper case
result += chr(asc+1)

elif 97 <= asc <= 122: # Lower case
result += chr(asc+1)

else: # Handle non-characters
result += c

print ("Encrypted text:", result)

Using functions Computer Science

Iterations and library functions 26(28)

Linnaeus University?:'r:"*

Programming: Old Java-test Exercise

Write a Java program Square. java that first reads any integer (higher than or
equal to 3) from the keyboard and then prints a non-filled square of the type
presented below. An execution might look like this:

Provide an integer 3 or higher: 5
The square for number 5

Hokokokok

* %

* %

* %

Hokokokok

An error message should be given, and the program should terminate, if the
user-provided integer value is below three.

Let us solve the problem in Python!

Using functions Computer Science

Iterations and library functions 27(28)

Solution - square.py

Sz

if

= int (input("Enter an integer 3 or higher: "))

sz < 3: # Check <input
print("The size must 3 or higher")

else:

Using functions

Two types of square lines
stars = ""
for i in range(sz):

stars += "x"

line = "*"

for i in range(sz-2):
line += " "

line += ""

Print square
print ("\nThe square for number", sz)
print(stars)
for i in range(sz-2):
print(line)
print(stars)

Iterations and library functions

Linnaeus Universityﬁ'j?*

Computer Science

28(28)

	While
	For
	Using functions

