07/09/2020 session_3

1DV501: Introduction to programming

Forelasning 3

Boolean Expressions and If-statements

Agenda

» Boolean Values

» Boolean Expressions

» Logical Operators

« [f-statements

» String indexing (extra material)

» Random number generators (extra material)

« Reading Instructions: Sections 4.1-4.14 in textbook by Halterman
» Exercises: Exercises 13-18 in Assignment 1

Control Statements

By using control statements the program can choose one execution path out of several possible options or it
can repeat a sequence of statements several times.

Until Now:

» Sequential execution (from the top and downwards)

Control Statements:

» Selective statements: Choose one execution path out of several possible options
In Python: if- statements

Iterative (or loop) statements: Repeat a sequence of statements several times

In Python: while- and for-statements (Next lecture!)

localhost:8889/lab 1/20

07/09/2020 session_3

A first example
Assign a Swedish grade (Fail, Pass, or Pass with distinction) to an exam result python

MIN, MAX, PASS, VG = 0, 100, 50, 75
points = int(input("Enter exam result: "))

if points >= 0 and points < PASS:
print("Fail")

elif points >= PASS and points < VG:
print("Pass")

elif points >= VG and points <= MAX:
print("Pass with distinction - Very Good!")

else:

print("Invalid exam result: ", points)

Output:

Enter exam result: 78
Pass with distinction - Very Good

Details from this example will be discussed in the following slides

In [2]:

MIN, MAX, PASS, VG = 0, 100, 50, 75
points = int(input("Enter exam result: "))

if points >= 0 and points < PASS:
print("Fail")
elif points >= PASS and points < VG:
print("Pass")
elif points >= VG and points <= MAX:
print("Pass with distinction - Very Good!")
else:
print("Invalid exam result:

, points)

Pass

localhost:8889/lab 2/20

07/09/2020 session_3

Boolean Variables

a = True
print(a, type(a))
True <class [hool'>

b = False
print(b, type(b))
False <class Dbool’>

In [4]:

a = True
print(a, type(a))

True <class 'bool'>

Boolean Expressions

a =10 < 7
print(a, type(a))

False <class Dbool’>
b=281!=14
print (b, type(b))

True <class [hool'>

In [5]:

a=10 < 7
print(a, type(a))

False <class 'bool'>

localhost:8889/lab 3/20

07/09/2020 session_3

In [6]:
8 is not 4

Out[6]:

True

In []:

» A boolean variable (typ e bool) can only take the values True or False
» We can generate boolean values using comparison op erators like < or I= ...
e ... or by using logical operators like and or not

In [7]:
b=1
c =2

b < 10 and ¢ < 10
out[7]:

True

In [8]:
b !=2
Out[8]:

True

localhost:8889/lab 4/20

07/09/2020 session_3

Boolean expressions

if points >= 0 and points < 50:
print("Fail")

e points >= 0 and points < 5 is a so-called boolean expression

» Boolean expression returns the values True or False

e Inan if -statement, the statements after the boolean expression is only executed if the value of the
boolean expression is True .

A boolean expression usually consists of:

1. Numerical values (such as 17, -100, 3.14) or numeric variables (such as MAX, PI, grade)
2. Comparison-operators: <, <=, >, >=, ==, I=

3. Logical operators: and, or, not

4. Functions returning boolean (Not in this lecture)

* NOTE The result of a comparison (such as points >= 0)is True or False) consider each boolean
expression to be an assertion.

In [12]:
1 =1.1
File "<ipython-input-12-074bbff55c4e>", line 1
1 =1.1

A

SyntaxError: can't assign to literal

Comparison Operators

« Python comparison operators (also called relational operators)

Expression Meaning

X ==y True ifx=Yy, else False

x>y True if x>y, else False

X <y True ifx<y, else False

X <=y True ifx=yorx<y,else False

x =y True ifxnotequaltoy, else False

 NOTE Notice that !'= means "not equal to" and == means "equal to". Do not mix up the comparison
operator == with the standard assignment operator =

localhost:8889/lab 5/20

07/09/2020 session_3

Logical Operators

e and:

-> A and B is True ifboth A and B are True, otherwiseitis False
e or:

-> A and B is True ifatleastoneof A and B is True, otherwiseitis False
L not .

-> not A negates the logical value, thatis not A is True if A is False , and the other way around.

A B A and B A or B not A
true true true true false
true false false true

false true false true true
false false false false

NOTE Logical operators can only be applied on Boolean values. Expressions like x>1 or 7 gives an error
since 7 is not a boolean value.

Tasks: True or false?

In [64]:

a = False
b False
a and b

Out[64]:

False

In [17]:
(12> 10) and (9 < 6)
Out[l7]:

False

localhost:8889/lab 6/20

07/09/2020 session_3
In [14]:
5> 4 or 8 <6
Out[1l4]:

True

In [15]:
7 >4 or 12 > 8 and 4 < 8
Out[15]:

True

In [18]:
6 > 3 and not (5 < 3) and not not (8 > 3)
Out[18]:

True

In [20]:
(10 + 20) < (3 + 4 * 5)
Out[20]:

False

In [21]:
10 == 20 or 3 + 4 > 5
out[21]:

True

In [22]:
10 !'= 20 and not (7>5) or 5 >=5
Out[22]:

True

localhost:8889/1ab 7/20

07/09/2020

In

session_3

[23]:

Not recommended

10 != 30 and not not not ...
not 4 < 2 or not 4 > 2 and ...
not not not not...

not not 1 != 0 or...

5 <10

Out[23]:

True

In []:

10 + 20 < 3 + 4 5 (False since 30 > 23)*
10 ==20o0or 3 + 4 > 5 (True since 7>5 is true)
10 != 20 and not (7>5) or 5 >=5 (True and False or True ==> True)

Different operators have different priorities.

The operators with highest priorities are computed first.

By using parentheses you can change the order. Ex: 3+4*5 is notequalto (3+4)%*5
Numerical operators: *,/ are computed before +, -

Logical operators: not before and before or

1. not
2. and
3. or

Generally: NumOP > CompOP > LogOP

Grades Example Revisited

We should now be able to understand all boolean expressions in the grade example

localhost:8889/lab

8/20

07/09/2020 session_3

In [25]:
MIN, MAX, PASS, V¢ = 0, 100, 50, 75
points = int(input("Enter exam result: "))

if points >= 0 and points < PASS:
print("Fail")
elif points >= PASS and points < VG:
print("Pass")
elif points >= VG and points <= MAX:
print("Pass with distinction - Very Good!")
else:
print("Invalid exam result:

, points)

Invalid exam result: 200

If-statements

Example: Simple if statement:

print("Computes A divided by B (A/B)")
a = int(input("Please enter A: "))

b = int(input("Please enter B: "))

if b = 0:
print(a, "/", b, "=", a/b)

In [27]:
print("Computes A divided by B (A/B)")

a = int(input("Please enter A: "))
b = int(input("Please enter B: "))

if b != 0:
print(a, "/", b, "=", a/b)

Computes A divided by B (A/B)

5/ 3 =1.6666666666666667

localhost:8889/lab 9/20

07/09/2020 session_3

In [28]:

5/0

ZeroDivisionError Traceback (most recent call 1
ast)

<ipython-input-28-0106664d39e8> in <module>

——==> 1 5/0

ZeroDivisionError: division by zero

» Executes the statement print(a, "/", b, "=", a/b onlyifthe boolean condition b != evaluates
to True
e b=0-->no output

Example: Simple if-else statement

In [30]:

print("Computes A divided by B (A/B)")

a = int(input("Please enter A: "))
b = int(input("Please enter B: "))
if b == 0:

print ("B must not be zero!")
else:

print(a, "/", b, "=", a/b)

Computes A divided by B (A/B)

B must not be zero!

o ifbranch print("B must not be zero!") onlyif b = 0, ...
« ...otherwise (in all other cases) uses the else branch print(a, "/", b, "=", a/b)
« One branch (if or else) is always executed

localhost:8889/lab 10/20

07/09/2020 session_3

if-else in general

if "condition":
"if body"
else:
"else body"

o The reserved word if begins the if-else statement

o Acolon (:) must follow the condition’

» The reserved word else begins the second part of the if/else statement.
e Acolon (:) must follow the else.

Rules for indentation

OK!
if n ==
print("One")

OK!
if n == 1: print("One")

Not OK!
if n ==
print("One")

OK!

if n ==
n=n+1 # indent 4
print("Increasing n")

OK!
if n ==
n=n+1 # indent 2

print("Increasing n")

Not OK!
if n ==
n=n+1 # indent 2

print("Increasing n") # indent 4

localhost:8889/lab 11/20

07/09/2020 session_3

In [36]:
n=1
if n ==

print('ett')
print('tva')

ett
tva

print(n)

n=1
if n ==
print(n)

» The content of an if (or else) body is defined by indentations

» All statements must have the same indentation

» The bodies must be indented at least one step. Some programmers consistently use two, but four is the
most popular step size (VSCode tab key gives by default four steps use it!)

Multi-choice using if-elif-else

« if-elif-else allows us to chose one out several option’

» The keyword elif is a short version of "else if"

o Always starts with if "condition": ...

... followed by any number of elif "condition"

» ... followed by a single else:

The use of else: is optional in an if-elif statement
Only the first branch that evaluates to True is executed

localhost:8889/lab 12/20

07/09/2020 session_3

In [40]:
n = int(input("Please enter a positive integer: "))

if n < 1:
print ("The number must be positive!")
elif n ==
print("One")
elif n ==
print ("Two")
elif n ==
print("Three")
else:
print("A number larger than three: ", n)

A number larger than three: 4

Python Simplifications

» Python allows us to simplify certain boolean expressions

In [43]:

points = 20

From the grades example

if points >= 0 and points < PASS:
print("Fail")

Fail

In [44]:

Equivalent and simpler
if 0 <= points < PASS:
print("Fail")

Fail

In [45]:

X, y, 2=1, 1,1
Are x,y,z all the same?
if (x == y) and (y == 2z):

print("They are the same")

They are the same

localhost:8889/1ab 13/20

07/09/2020 session_3

In [46]:

Equivalent and simpler
ifx::y::
print("They are the same")

They are the same

« Case 1: Alogical expression points >= 0 and points < PASS is replaced with aninterval 0 <=
points < PASS

« Case 2: Once again, a simplified expression that can be generalized to multiple variables a == == c
In [47]:
MIN, MAX, PASS, VG = 0, 100, 50, 75
points = int(input("Enter exam result: "))

if 0 <= points < PASS:
print("Fail")
elif PASS <= points < VG:
print("Pass")
elif VG <= points <= MAX:
print("Pass with distinction - Very Good!")
else:
print("Invalid exam result: ", grade)

Pass

Nestled example: Odd or even?

In [48]:

Check if a number is even or odd
n = int(input("Please enter a positive integer:"))

if n < 1: # Check if positive
print ("The number must be positive!")

else:
if n%2 == 0: # Check if even
print(n, "is an even number")
else:

print(n, "is an odd number")

7 is an odd number

* We have an if-else statement inside the else branch of an outer statement
o Statements inside other statements are called nestled statement

localhost:8889/lab 14/20

07/09/2020 session_3

Nestled Statements

Understanding each control statement by itself is rather easy
Solving problem requiring only one such statement is also often rather easy
However, many problems require multiple nestled control statements

if n > 0:
if n % 2 == 0:

else:
while n > 10:

else:

for i in range(2,6):

Solution with nestled statements --> more complex --> more training needed
Assignment 2 has a large set of problems that require nestled statements
while and for statements will be presented in the next lecture

Conditional Expressions - A Python Shortcut

In

a,

In

[49]:

b =3, -5

[53]:

Find smallest number

if a < b:
minl = a
else:
minl = b

print("Min is", minl) # Prints -5

Min is -5

In

[54]:

Equivalent
min = a if a < b else b
print("Min is", min)

Min is -5

localhost:8889/lab

15/20

07/09/2020 session_3

In [55]:

Equivalent
print("Min is", a if a < b else b)

Min is -5

In [56]:

Even or odd

print(a, "is", "even" if a % 2 == 0 else "odd")

3 is odd

Conditional Expressions (cont.)
Conditional expressions like

min = a if a < b else b
or

s = "even" if a % 2 == 0 else "odd"

+ is a short version of an if-else statement.
e The general formis "true expression" if "condition" else "false expression

o |t evaluates to true expression if condition is True
o It evaluatesto false expression if condition is False
» Warning: Use it with care! It is likely to produce code that is hard to read and understand

String Indexing

s = "Hello Python"

Characters at positions 0 and 6
print(s[0], s[6], type(s[0])) # Output: H P <class 'str'>

sub = s[1l:4] # Positions 1 to 3
print(sub, type(sub)) # Output ell <class 'str'>

length = len(s) # String length
print(length, type(length)) # Output: 12 <class 'int'>

localhost:8889/lab

16/20

07/09/2020 session_3

In [57]:

s = "Hello Python"

Characters at positions 0 and 6
print(s[0], s[6], type(s[0])) # Output: H P <class 'str'>

sub = s[1l:4] # Positions 1 to 3
print(sub, type(sub)) # Output ell <class 'str'>

length = len(s) # String length
print(length, type(length)) # Output: 12 <class 'int'>"""

H P <class 'str'>
ell <class 'str'>
12 <class 'int'>

String Indexing

» s[6] select character at position 6

Warning: Positions start at position zero \ra s[0] is the first character
e s[l:4] strings with characters 1to 3

Warning: First position (1) included, final position (4) not included

The function len(...) gives the length of a string

Random Numbers

(NB. Pseudo-random, Mersenne Twister is one of the most extensively tested random number generators in
existence. However, being completely deterministic, it is not suitable for all purposes, and is completely
unsuitable for cryptographic purposes.)

import random # Always at start of programs

nl = random.randint(90,100) # Random integer in interval [90,100]
n2 = random.randint(-10,10)
n3 = random.randint(-30,-20)

print(nl, n2, n3)

fl = random.uniform(40, 50) # Random float in interval [40.0,50.0]
f2 = random.uniform(0, 1)
f3 = round(random.uniform(0, 10), 2) # Rounded to two decimals

print(f1, f2, £3)

» Random functions are not available by default they must be imported

e import random makes the random module available

e random.randint(90,100) call function randint in module random
» More about modules and imports later on ...

localhost:8889/lab 17/20

07/09/2020 session_3

In [59]:

import random # Always at start of programs

nl random.randint(90,100) # Random integer in interval [90,100]
n2 = random.randint(-10,10)

n3 = random.randint(-30,-20)

print(nl, n2, n3)

fl1 = random.uniform(40, 50) # Random float in interval [40.0,50.0]
f2 random.uniform(0, 1)

£3 round(random.uniform(0, 10), 2) # Rounded to two decimals
print(f1, f£2, £3)

92 7 =30
46.92390214297626 0.9745740547622217 9.67

Programming Examples - Duplicates

Write a program duplicates.py which reads three integers from the keyboard and decides if they contain any
duplicate elements or if they are all unique.

Execution examples:

Enter three integers A, B, C
Enter A: 2

Enter B: 5

Enter C: 5

We have duplicates!

Enter three integers A, B, C
Enter A: 4

Enter B: 6

Enter C: 8

They are all unique!

In [60]:

print ("Enter three integers A, B, C")

a = int(input("Enter A: "))

b = int(input("Enter B: "))

c = int(input("Enter C: "))

if a == b or b == c or ¢ == a:
print ("We have duplicates!")

else:

print ("They are all unique!")
Enter three integers A, B, C

We have duplicates!

localhost:8889/lab 18/20

07/09/2020 session_3

Programming Examples - Dividable

Write a program dividable.py which reads a positive integer from the keyboard and decides if it is dividable by 3
or 4, but not both.

Execution examples:

Please provide a positive integer: 8
8 1is dividable by 4 (but not 3)

Please provide a positive integer: 12
12 does not fulfill the requirements

Please provide a positive integer: -7
The number must be positive!

In [62]:

Read user input
n = int(input("Please provide a positive integer:"))

if n < 0: # Check for positive
print ("The number must be positive!")

else:
if n $ 3 ==0and n ¢ 4 != 0: # by 3 but not by 4
print(n, " is dividable by 3 (but not 4)")
elif n $ 4 == 0 and n & 3 != 0: # by 4 but not by 3

print(n, " is dividable by 4 (but not 3)")
else: # Not fulfilling requirements
print(n, "does not fulfill the requirements")

8 1is dividable by 4 (but not 3)

localhost:8889/lab 19/20

07/09/2020 session_3

Course information

Assignment 1 deadline: Sunday September 13

« Campus students must present their A1 solutions at the final tutoring session before the deadline

» Distance students will be informed about a video meeting around (short before or after) the deadline
Important: Distance students must get in contact with their tutoring supervisor to register as an active
distance students.

LNU Rule: Non-active students should be unregistered

We will consider a student as active if they:

» Campus students that show up and are active (present Assignment 1 solutions) at tutoring sessions, or
» Distance students that sign up for for video meeting to present their Assignment 1 solutions

In []:

localhost:8889/lab 20/20

