
07/09/2020 session_3

localhost:8889/lab 1/20

1DV501: Introduction to programming
Föreläsning 3

Boolean Expressions and If-statements

Agenda
Boolean Values
Boolean Expressions
Logical Operators
If-statements
String indexing (extra material)
Random number generators (extra material)

Reading Instructions: Sections 4.1-4.14 in textbook by Halterman
Exercises: Exercises 13-18 in Assignment 1

Control Statements
By using control statements the program can choose one execution path out of several possible options or it
can repeat a sequence of statements several times.

Until Now:
Sequential execution (from the top and downwards)

Control Statements:
Selective statements: Choose one execution path out of several possible options
In Python: if- statements
Iterative (or loop) statements: Repeat a sequence of statements several times
In Python: while- and for-statements (Next lecture!)

07/09/2020 session_3

localhost:8889/lab 2/20

A first example
Assign a Swedish grade (Fail, Pass, or Pass with distinction) to an exam result python

MIN, MAX, PASS, VG = 0, 100, 50, 75
points = int(input("Enter exam result: "))

if points >= 0 and points < PASS:
 print("Fail")
elif points >= PASS and points < VG:
 print("Pass")
elif points >= VG and points <= MAX:
 print("Pass with distinction - Very Good!")
else:
 print("Invalid exam result: ", points)

Output:
Enter exam result: 78
Pass with distinction - Very Good

Details from this example will be discussed in the following slides

In [2]:

MIN, MAX, PASS, VG = 0, 100, 50, 75
points = int(input("Enter exam result: "))

if points >= 0 and points < PASS:
 print("Fail")
elif points >= PASS and points < VG:
 print("Pass")
elif points >= VG and points <= MAX:
 print("Pass with distinction - Very Good!")
else:
 print("Invalid exam result: ", points)

Pass

07/09/2020 session_3

localhost:8889/lab 3/20

Boolean Variables
a = True
print(a, type(a))
True <class 'bool'>

b = False
print(b, type(b))
False <class 'bool'>

In [4]:

a = True
print(a, type(a))

Boolean Expressions
a = 10 < 7
print(a, type(a))

False <class 'bool'>

b = 8 != 4
print(b, type(b))

True <class 'bool'>

In [5]:

a = 10 < 7
print(a, type(a))

True <class 'bool'>

False <class 'bool'>

07/09/2020 session_3

localhost:8889/lab 4/20

In [6]:

8 is not 4

In []:

A boolean variable (typ e bool) can only take the values True or False
We can generate boolean values using comparison op erators like < or != ...
... or by using logical operators like and or not

In [7]:

b = 1
c = 2

b < 10 and c < 10

In [8]:

b != 2

Out[6]:

True

Out[7]:

True

Out[8]:

True

07/09/2020 session_3

localhost:8889/lab 5/20

Boolean expressions
if points >= 0 and points < 50:
 print("Fail")

points >= 0 and points < 5 is a so-called boolean expression
Boolean expression returns the values True or False
In an if -statement, the statements after the boolean expression is only executed if the value of the
boolean expression is True .

A boolean expression usually consists of:
1. Numerical values (such as 17, -100, 3.14) or numeric variables (such as MAX, PI, grade)
2. Comparison-operators: <, <=, >, >=, ==, !=
3. Logical operators: and, or, not
4. Functions returning boolean (Not in this lecture)

NOTE The result of a comparison (such as points >= 0) is True or False) consider each boolean
expression to be an assertion.

In [12]:

1 = 1.1

Comparison Operators
Python comparison operators (also called relational operators)

Expression Meaning

x == y True if x = y, else False

x > y True if x > y, else False

x < y True if x < y, else False

x <= y True if x = y or x < y, else False

x != y True if x not equal to y, else False

NOTE Notice that != means "not equal to" and == means "equal to". Do not mix up the comparison
operator == with the standard assignment operator =

 File "<ipython-input-12-074bbff55c4e>", line 1
 1 = 1.1
 ^
SyntaxError: can't assign to literal

07/09/2020 session_3

localhost:8889/lab 6/20

Logical Operators
and :

-> A and B is True if both A and B are True , otherwise it is False
or :

-> A and B is True if at least one of A and B is True , otherwise it is False
not :

-> not A negates the logical value, that is not A is True if A is False , and the other way around.

A B A and B A or B not A
==== ==== ======== ======== ====
true true true true false
true false false true
false true false true true
false false false false

NOTE Logical operators can only be applied on Boolean values. Expressions like x>1 or 7 gives an error
since 7 is not a boolean value.

Tasks: True or false?

In [64]:

a = False
b = False
a and b

In [17]:

(12 > 10) and (9 < 6)

Out[64]:

False

Out[17]:

False

07/09/2020 session_3

localhost:8889/lab 7/20

In [14]:

5 > 4 or 8 < 6

In [15]:

7 > 4 or 12 > 8 and 4 < 8

In [18]:

6 > 3 and not (5 < 3) and not not (8 > 3)

In [20]:

(10 + 20) < (3 + 4 * 5)

In [21]:

10 == 20 or 3 + 4 > 5

In [22]:

10 != 20 and not (7>5) or 5 >=5

Out[14]:

True

Out[15]:

True

Out[18]:

True

Out[20]:

False

Out[21]:

True

Out[22]:

True

07/09/2020 session_3

localhost:8889/lab 8/20

In [23]:

Not recommended

10 != 30 and not not not ...
not 4 < 2 or not 4 > 2 and ...
not not not not...
not not 1 != 0 or...
5 < 10

In []:

10 + 20 < 3 + 4 5 (False since 30 > 23)*
10 == 20 or 3 + 4 > 5 (True since 7>5 is true)
10 != 20 and not (7>5) or 5 >=5 (True and False or True ==> True)

Different operators have different priorities.
The operators with highest priorities are computed first.
By using parentheses you can change the order. Ex: 3+4*5 is not equal to (3+4)*5
Numerical operators: *,/ are computed before +,-
Logical operators: not before and before or

1. not
2. and
3. or

Generally: NumOP > CompOP > LogOP

Grades Example Revisited
We should now be able to understand all boolean expressions in the grade example

Out[23]:

True

07/09/2020 session_3

localhost:8889/lab 9/20

In [25]:

MIN, MAX, PASS, VG = 0, 100, 50, 75
points = int(input("Enter exam result: "))

if points >= 0 and points < PASS:
 print("Fail")
elif points >= PASS and points < VG:
 print("Pass")
elif points >= VG and points <= MAX:
 print("Pass with distinction - Very Good!")
else:
 print("Invalid exam result: ", points)

If-statements

Example: Simple if statement:
print("Computes A divided by B (A/B)")
a = int(input("Please enter A: "))
b = int(input("Please enter B: "))

if b != 0:
 print(a, "/", b, "=", a/b)

In [27]:

print("Computes A divided by B (A/B)")
a = int(input("Please enter A: "))
b = int(input("Please enter B: "))

if b != 0:
 print(a, "/", b, "=", a/b)

Invalid exam result: 200

Computes A divided by B (A/B)

5 / 3 = 1.6666666666666667

07/09/2020 session_3

localhost:8889/lab 10/20

In [28]:

5/0

Executes the statement print(a, "/", b, "=", a/b only if the boolean condition b != evaluates
to True
b = 0 --> no output

Example: Simple if-else statement

In [30]:

print("Computes A divided by B (A/B)")
a = int(input("Please enter A: "))
b = int(input("Please enter B: "))

if b == 0:
 print("B must not be zero!")
else:
 print(a, "/", b, "=", a/b)

if branch print("B must not be zero!") only if b = 0 , ...`
...otherwise (in all other cases) uses the else branch print(a, "/", b, "=", a/b)
One branch (if or else) is always executed

ZeroDivisionError Traceback (most recent call l
ast)
<ipython-input-28-0106664d39e8> in <module>
----> 1 5/0

ZeroDivisionError: division by zero

Computes A divided by B (A/B)

B must not be zero!

07/09/2020 session_3

localhost:8889/lab 11/20

if-else in general
if "condition":
 "if body"
else:
 "else body"

The reserved word if begins the if-else statement`
A colon (:) must follow the condition`
The reserved word else begins the second part of the if/else statement.
A colon (:) must follow the else.

Rules for indentation
OK!
if n == 1:
 print("One")

OK!
if n == 1: print("One")

Not OK!
if n == 1:
print("One")

OK!
if n == 1:
 n = n + 1 # indent 4
 print("Increasing n")

OK!
if n == 1:
 n = n + 1 # indent 2
 print("Increasing n")

Not OK!
if n == 1:
 n = n + 1 # indent 2
 print("Increasing n") # indent 4

07/09/2020 session_3

localhost:8889/lab 12/20

In [36]:

n = 1

if n == 1:
 print('ett')
 print('två')

In []:

n=1
if n == 1:
 print(n)

In []:

n=1
if n == 1:
 print(n)

The content of an if (or else) body is defined by indentations
All statements must have the same indentation
The bodies must be indented at least one step. Some programmers consistently use two, but four is the
most popular step size (VSCode tab key gives by default four steps use it!)

Multi-choice using if-elif-else
if-elif-else allows us to chose one out several option`
The keyword elif is a short version of "else if"
Always starts with if "condition": ...
... followed by any number of elif "condition"
... followed by a single else:
The use of else: is optional in an if-elif statement
Only the first branch that evaluates to True is executed

ett
två

07/09/2020 session_3

localhost:8889/lab 13/20

In [40]:

n = int(input("Please enter a positive integer: "))

if n < 1:
 print("The number must be positive!")
elif n == 1:
 print("One")
elif n == 2:
 print("Two")
elif n == 3:
 print("Three")
else:
 print("A number larger than three: ", n)

Python Simplifications
Python allows us to simplify certain boolean expressions

In [43]:

points = 20
From the grades example
if points >= 0 and points < PASS:
 print("Fail")

In [44]:

Equivalent and simpler
if 0 <= points < PASS:
 print("Fail")

In [45]:

x, y, z = 1, 1, 1

Are x,y,z all the same?
if (x == y) and (y == z):
 print("They are the same")

A number larger than three: 4

Fail

Fail

They are the same

07/09/2020 session_3

localhost:8889/lab 14/20

In [46]:

Equivalent and simpler
if x == y == z:
 print("They are the same")

Case 1: A logical expression points >= 0 and points < PASS is replaced with an interval 0 <=
points < PASS
Case 2: Once again, a simplified expression that can be generalized to multiple variables a == b == c
== d ==

In [47]:

MIN, MAX, PASS, VG = 0, 100, 50, 75
points = int(input("Enter exam result: "))

if 0 <= points < PASS:
 print("Fail")
elif PASS <= points < VG:
 print("Pass")
elif VG <= points <= MAX:
 print("Pass with distinction - Very Good!")
else:
 print("Invalid exam result: ", grade)

Nestled example: Odd or even?

In [48]:

Check if a number is even or odd
n = int(input("Please enter a positive integer:"))

if n < 1: # Check if positive
 print("The number must be positive!")
else:
 if n%2 == 0: # Check if even
 print(n, "is an even number")
 else:
 print(n, "is an odd number")

We have an if-else statement inside the else branch of an outer statement
Statements inside other statements are called nestled statement

They are the same

Pass

7 is an odd number

07/09/2020 session_3

localhost:8889/lab 15/20

Nestled Statements
Understanding each control statement by itself is rather easy
Solving problem requiring only one such statement is also often rather easy
However, many problems require multiple nestled control statements

if n > 0:
 if n % 2 == 0:
 ...
 else:
 while n > 10:
 ...
else:
 for i in range(2,6):

Solution with nestled statements --> more complex --> more training needed
Assignment 2 has a large set of problems that require nestled statements
while and for statements will be presented in the next lecture

Conditional Expressions - A Python Shortcut

In [49]:

a, b = 3, -5

In [53]:

Find smallest number
if a < b:
 min1 = a
else:
 min1 = b
print("Min is", min1) # Prints -5

In [54]:

Equivalent
min = a if a < b else b
print("Min is", min)

Min is -5

Min is -5

07/09/2020 session_3

localhost:8889/lab 16/20

In [55]:

Equivalent
print("Min is", a if a < b else b)

In [56]:

Even or odd
print(a, "is", "even" if a % 2 == 0 else "odd")

Conditional Expressions (cont.)
Conditional expressions like

min = a if a < b else b

or

s = "even" if a % 2 == 0 else "odd"

is a short version of an if-else statement.
The general form is "true_expression" if "condition" else "false_expression

It evaluates to true_expression if condition is True
It evaluates to false_expression if condition is False
Warning: Use it with care! It is likely to produce code that is hard to read and understand

String Indexing
s = "Hello Python"

Characters at positions 0 and 6
print(s[0], s[6], type(s[0])) # Output: H P <class 'str'>

sub = s[1:4] # Positions 1 to 3
print(sub, type(sub)) # Output ell <class 'str'>

length = len(s) # String length
print(length, type(length)) # Output: 12 <class 'int'>

Min is -5

3 is odd

07/09/2020 session_3

localhost:8889/lab 17/20

In [57]:

s = "Hello Python"

Characters at positions 0 and 6
print(s[0], s[6], type(s[0])) # Output: H P <class 'str'>

sub = s[1:4] # Positions 1 to 3
print(sub, type(sub)) # Output ell <class 'str'>

length = len(s) # String length
print(length, type(length)) # Output: 12 <class 'int'>```

String Indexing
s[6] select character at position 6

Warning: Positions start at position zero \ra s[0] is the first character
s[1:4] strings with characters 1 to 3

Warning: First position (1) included, final position (4) not included
The function len(...) gives the length of a string

Random Numbers
(NB. Pseudo-random, Mersenne Twister is one of the most extensively tested random number generators in
existence. However, being completely deterministic, it is not suitable for all purposes, and is completely
unsuitable for cryptographic purposes.)

import random # Always at start of programs

n1 = random.randint(90,100) # Random integer in interval [90,100]
n2 = random.randint(-10,10)
n3 = random.randint(-30,-20)
print(n1, n2, n3)

f1 = random.uniform(40, 50) # Random float in interval [40.0,50.0]
f2 = random.uniform(0, 1)
f3 = round(random.uniform(0, 10), 2) # Rounded to two decimals
print(f1, f2, f3)

Random functions are not available by default they must be imported
import random makes the random module available
random.randint(90,100) call function randint in module random

More about modules and imports later on ...

H P <class 'str'>
ell <class 'str'>
12 <class 'int'>

07/09/2020 session_3

localhost:8889/lab 18/20

In [59]:

import random # Always at start of programs

n1 = random.randint(90,100) # Random integer in interval [90,100]
n2 = random.randint(-10,10)
n3 = random.randint(-30,-20)
print(n1, n2, n3)

f1 = random.uniform(40, 50) # Random float in interval [40.0,50.0]
f2 = random.uniform(0, 1)
f3 = round(random.uniform(0, 10), 2) # Rounded to two decimals
print(f1, f2, f3)

Programming Examples - Duplicates
Write a program duplicates.py which reads three integers from the keyboard and decides if they contain any
duplicate elements or if they are all unique.

Execution examples:

Enter three integers A, B, C
Enter A: 2
Enter B: 5
Enter C: 5
We have duplicates!

Enter three integers A, B, C
Enter A: 4
Enter B: 6
Enter C: 8
They are all unique!

In [60]:

print("Enter three integers A, B, C")
a = int(input("Enter A: "))
b = int(input("Enter B: "))
c = int(input("Enter C: "))

if a == b or b == c or c == a:
 print("We have duplicates!")
else:
 print("They are all unique!")

92 7 -30
46.92390214297626 0.9745740547622217 9.67

Enter three integers A, B, C

We have duplicates!

07/09/2020 session_3

localhost:8889/lab 19/20

Programming Examples - Dividable
Write a program dividable.py which reads a positive integer from the keyboard and decides if it is dividable by 3
or 4, but not both.

Execution examples:

Please provide a positive integer: 8
8 is dividable by 4 (but not 3)

Please provide a positive integer: 12
12 does not fulfill the requirements

Please provide a positive integer: -7
The number must be positive!

In [62]:

Read user input
n = int(input("Please provide a positive integer:"))

if n < 0: # Check for positive
 print("The number must be positive!")
else:
 if n % 3 == 0 and n % 4 != 0: # by 3 but not by 4
 print(n, " is dividable by 3 (but not 4)")
 elif n % 4 == 0 and n % 3 != 0: # by 4 but not by 3
 print(n, " is dividable by 4 (but not 3)")
 else: # Not fulfilling requirements
 print(n, "does not fulfill the requirements")

8 is dividable by 4 (but not 3)

07/09/2020 session_3

localhost:8889/lab 20/20

Course information

Assignment 1 deadline: Sunday September 13

Campus students must present their A1 solutions at the final tutoring session before the deadline
Distance students will be informed about a video meeting around (short before or after) the deadline
Important: Distance students must get in contact with their tutoring supervisor to register as an active
distance students.

LNU Rule: Non-active students should be unregistered
We will consider a student as active if they:

Campus students that show up and are active (present Assignment 1 solutions) at tutoring sessions, or
Distance students that sign up for for video meeting to present their Assignment 1 solutions

In []:

