
2020-09-02, 12:281dv501-lekt2

Page 1 of 19about:srcdoc

Lektion 2
Date: 200902

1DV501, Grundläggande programmering
Fredrik Ahlgren

Agenda
Variabler
Print statements
Strings
Number types
Type conversions
Integer operations
Read text from input

Läsinstruktioner:

Kap. 2.1-2.8 och 3.1-3.8 Python Fundamentals, Halterman. Övningar:
Exercises 5-12 in Assignment 1

2020-09-02, 12:281dv501-lekt2

Page 2 of 19about:srcdoc

Variabler, print()
Variabler sätts med ´=´
Python är "intelligent", behöver ej fördefinera (nedan integer)

Example 1:

a = 10
b = 5
print(a+b)

Example 2:

a = 10
b = a + 7
print(a, b)

In [1]:

Exempel 1

a = 10
b = 5
print(a+b)

In [2]:

Exempel 2

10= 10
b = a + 7
print(a, b)

In [5]:

d = 1

In [8]:

print(d)

15

10 17

1

2020-09-02, 12:281dv501-lekt2

Page 3 of 19about:srcdoc

a, b --> variabler.
a = 10 --> assigment.
b = a + 7 --> a används för att assigna b

Variabler måste assignas före de används (ej defineras)
Variabel ensam på vänster sida
a + 1 = 10 # ERROR!

Variabler är 'containers' för data
En variabel skapas när ett värde 'assignas'.

Specifika regler för Python
Variable names must start with a letter or the underscore character ()
A variable name cannot start with a number
A variable name can only contain alpha-numeric characters and underscores (a-z, A-Z, 0-9, and
)
Python has certain reserved keywords, which can not be used for variables
Variable names are case-sensitive (age, Age and AGE are three different variables)

Python naming conventions (Recommended, not a rule):

Use a lowercase single letter, word, or words.
Separate words with underscores to improve readability.
Examples: x , height , my_variable
Use English, avoid strange characters like the Swedish ÅÄÖ or other special letters

Important

Python keywords can not be used as variable names.

False, await, else, import, pass, None, break, except, in, raise, True,
class, is, return, pass, global, and, for, while, elif, or, with ... etc ..

2020-09-02, 12:281dv501-lekt2

Page 4 of 19about:srcdoc

Function print()
print(100)
print(1, end="")
print(2, end="x")
print(3, end="A")
print(4, end="\n")

print(100) default, prints 100 and breaks the line
print(1, end="") prints 1 with no line break
print(3, end="A") ends with A rather than line break
print(4, end="\n") same as print(4), \n symbolizes line break
print(10,20,30,40,50) default, prints with a whitespace between each element and breaks the line
print(1,2,3,4,5, sep=", ") replaces separating whitespace with ", " (a comma plus whitespace)

In [10]:

print(100)
print(1, end="")
print(2, end="x")
print(3, end="A")
print(4, end="\n")
print(10,20,30,40,50)
print(1,2,3,4,5, sep=", nästa nummer: ")

100
12x3A4
10 20 30 40 50
1, nästa nummer: 2, nästa nummer: 3, nästa nummer: 4, nästa nummer
: 5

2020-09-02, 12:281dv501-lekt2

Page 5 of 19about:srcdoc

Multiple assignments
One assignment on each line (the standard approach):

a = 1
b = 2
c = 3
print(a,b,c) # Output: 1 2 3

Equivalent using multi-assignment (a more compact version):

a,b,c = 1,2,3
print(a,b,c) # Output: 1,2,3

Using multi assignments like a,b,c = 1,2,3 you can assign multiple variables in a single row.
Use it only in trivial assignments like the one above, avoid it when having more complex expressions
on the right-hand side.

In [12]:

a = 1
b = 2
c = 3
print(a,b,c)

In [15]:

a,b,c = 1,2,3
print(a,b,c)

Strings
A string is a sequence of characters
character = letter, digit, whitespace, ... (all sorts of symbols)
String examples:

"Are you suggesting that coconuts migrate?"

'Not at all. They could be carried.'

"What? A swallow carrying a coconut?"

1 2 3

1 2 3

2020-09-02, 12:281dv501-lekt2

Page 6 of 19about:srcdoc

A string is created using "..." or '...'

In [19]:

s1 = 'Dead Collector: Ere, he says he´s not dead.\n' # Using ''
s2 = "Large Man: Yes he is.\n" # Using "..."
s3 = " 'Dead' Man\": I\'m not.\n" # Note the Escape-character!
print(s1,s2,s3)

String Concatenation
In [20]:

print("This sentence gives a string that
 according to me is too long to fit
 on a single line.")

You can not break a line in the middle of a string.
However, you can create a new string by adding two strings this is called string concatenation

In [21]:

print("This sentence gives a string that "
 + "according to me is too long to fit "
 + "on a single line.")

In [25]:

print("This sentence gives a string that "+
 "according to me is too long to fit "+
 "on a single line.")

Dead Collector: Ere, he says he´s not dead.
 Large Man: Yes he is.
 'Dead' Man": I'm not.

 File "<ipython-input-20-b63cffc18e55>", line 1
 print("This sentence gives a string that
 ^
SyntaxError: EOL while scanning string literal

This sentence gives a string that according to me is too long to f
it on a single line.

This sentence gives a string that according to me is too long to f
it on a single line.

2020-09-02, 12:281dv501-lekt2

Page 7 of 19about:srcdoc

Notice: string + string = new string

s = 'A'
s = s + 'B'
s = s + 'C'
print(s) # Output: ABC

In [26]:

s = 'A'
s = s + 'B'
s = s + 'C'
print(s) # Output: ABC

Escape Sequences

In [27]:

print("Black Knight: "It's just a flesh wound."") # Error!

It is interpreted as: "And then she said: " followed by something strange) Strings created with "..."
can not contain the character "
Escape Sequences: Characters representing another character
Most frequently used escape sequences in Python

Escape Represents:

\" "
\' '
\ \
\n line break
\t tab

In [28]:

print("Black Knight: \"It´s just a flesh wound.\"")

ABC

 File "<ipython-input-27-8eef0903064c>", line 1
 print("Black Knight: "It's just a flesh wound."") # Error!
 ^
SyntaxError: invalid syntax

Black Knight: "It´s just a flesh wound."

2020-09-02, 12:281dv501-lekt2

Page 8 of 19about:srcdoc

or ... by using

In [29]:

print('Black Knight: "It´s just a flesh wound."')

Escape examples
In [30]:

print("One\n \tTwo\n \t\tThree\n")

In [31]:

print("King Arthur:\n\tLook stop that!:\n"+"Black Knight:\n\tChicken.\n"+"King
Arthur:"+"\n\tLook, I'll Have your Leg.\n"+"Black Knight:"+"\n\tRight, I'll do
you for that.")

Black Knight: "It´s just a flesh wound."

One
 Two
 Three

King Arthur:
 Look stop that!:
Black Knight:
 Chicken.
King Arthur:
 Look, I'll Have your Leg.
Black Knight:
 Right, I'll do you for that.

2020-09-02, 12:281dv501-lekt2

Page 9 of 19about:srcdoc

In [32]:

Readability counts!

print("King Arthur:\n\tLook stop that!:\n"+
 "Black Knight:\n\tChicken.\n"+
 "King Arthur:"+
 "\n\tLook, I'll Have your Leg.\n"+
 "Black Knight:"
 +"\n\tRight, I'll do you for that.")

Printing formatted strings
Output: height 3.5 and width 4.0 gives area 14.0 (in all three cases)

In [35]:

Using multiprint
h = 3.5
w = 4.
print("height",h,"and width",w,"gives area",h*w)

Using format
print("height {0} and width {1} gives area {2}".format(h,w,h*w))

Using f-strings
print(f"height {h} and width {w} gives area {h*w}")

The 2nd approach (formatted print) is now outdated and replaced with the 3rd approach
However, the textbook by Halterman sometimes uses the formatted print approach) you should
understand it. Introduced in section 2.8.
We recommend 1st and 3rd approach

Variables and Types

King Arthur:
 Look stop that!:
Black Knight:
 Chicken.
King Arthur:
 Look, I'll Have your Leg.
Black Knight:
 Right, I'll do you for that.

height 3.5 and width 4.0 gives area 14.0
height 3.5 and width 4.0 gives area 14.0
height 3.5 and width 4.0 gives area 14.0

2020-09-02, 12:281dv501-lekt2

Page 10 of 19about:srcdoc

In [36]:

s = 'Peasant: Oh, she turned me into a newt!'
print(s, type(s))

In [39]:

s = 1.
type(s)

In [40]:

s = 42
print(s, type(s))

In [41]:

s = 42. # note the decimal
print(s, type(s))

A variable has a current type depending on what type of value it contains
You can question a variable s of its current type using type(s)
The type function can also be applied on values

In [42]:

Simple math?
print(3.3 - 1.1)

The answer .. ?

Mixing types

In [43]:

text = 'Peasant: And the hat. ' + 'She´s a witch!!' # OK!
n = 7 + 8 # OK!

Peasant: Oh, she turned me into a newt! <class 'str'>

Out[39]:

float

42 <class 'int'>

42.0 <class 'float'>

2.1999999999999997

2020-09-02, 12:281dv501-lekt2

Page 11 of 19about:srcdoc

In [44]:

result = "Height = " + 123 # Error!

You can not concatenate a string with an integer
In general, you can not mix types in expressions
However, you can convert an integer to string and then concatenate them

In [45]:

h = 123
result = "Height = " + str(h) # Converts h to a string
print(result, type(result))

Type Conversion
str(n) converts a number n to a string
int(s) converts a string s to an integer

Example

In [48]:

s = str(123) # Convert integer to string
print(s, type(s))
n = int("123") # Convert string to integer
print(n, type(n))

You will get an error if you try to convert an arbitrary string (e.g. "hello") to an integer.

--

TypeError Traceback (most recent c
all last)
<ipython-input-44-7020183896d2> in <module>
----> 1 result = "Height = " + 123 # Error!

TypeError: can only concatenate str (not "int") to str

Height = 123 <class 'str'>

123 <class 'str'>
123 <class 'int'>

2020-09-02, 12:281dv501-lekt2

Page 12 of 19about:srcdoc

Decimal Numbers (1)
Python can of course also handle decimal numbers

In [53]:

pi = 3.14159265359
print(pi, type(pi))
d = 2*3
print(d, type(d))
Na = 6.02214076e23 # Avogadros number
print(Na, type(Na))

Decimal numbers are called float in Python
6.02214076e23 should be interpreted as 6.02214076 * 10^23

Decimal Numbers (2)

In [54]:

print(4/2 , type(4/2))
print(4*2.0 , type(4*2.0))
print(4+2.0 , type(4+2.0))

Operations involving floats always give a float
Division using = always give a float

Decimal Numbers (3)
The function round() is used to round of decimals

3.14159265359 <class 'float'>
6 <class 'int'>
6.02214076e+23 <class 'float'>

2.0 <class 'float'>
8.0 <class 'float'>
6.0 <class 'float'>

2020-09-02, 12:281dv501-lekt2

Page 13 of 19about:srcdoc

In [55]:

d = 1234.56789
x = int(d) # Convert to integer
print(x, type(x))
x = round(d) # Correctly rounded off
print(x, type(x))
x = round(d,2) # Two decimals
print(x, type(x))

Convert to integer using int(...)) cuts o​ decimals
round(d)) correctly rounded o​ integer
round(d,2)) two decimal float correctly rounded

Integer Division and Modulus

Integer Division A // B -> how many B fit inside A?

Integer division Example:

In [56]:

7 // 3

In [57]:

27 // 4

In [58]:

20 // 4

1234 <class 'int'>
1235 <class 'int'>
1234.57 <class 'float'>

Out[56]:

2

Out[57]:

6

Out[58]:

5

2020-09-02, 12:281dv501-lekt2

Page 14 of 19about:srcdoc

In [59]:

9 // 10

In [60]:

94 // 10

In [61]:

(-94) // 10

Wait ... what happened here ???

http://python-history.blogspot.com/2010/08/why-pythons-integer-division-floors.html (http://python-
history.blogspot.com/2010/08/why-pythons-integer-division-floors.html)

But if one of the operands is negative, the result is floored, i.e., rounded away from zero (towards negative
infinity)

Modulus
remainder of A in A//B

In [62]:

13%3

In [63]:

15%5

Out[59]:

0

Out[60]:

9

Out[61]:

-10

Out[62]:

1

Out[63]:

0

http://python-history.blogspot.com/2010/08/why-pythons-integer-division-floors.html

2020-09-02, 12:281dv501-lekt2

Page 15 of 19about:srcdoc

In [64]:

16%5

In [65]:

17%5

In [66]:

77%10

Example - Arithmetics

In [67]:

x = 2.5
y = x + 50.0
z = x * y

print("X =", x, ", Y =", y, ", Z =", z)

m = 17
n = 5

div = m // n

mod = m % n

print("\nDivide:", div, ", Modulus:", mod)

Out[64]:

1

Out[65]:

2

Out[66]:

7

X = 2.5 , Y = 52.5 , Z = 131.25

Divide: 3 , Modulus: 2

2020-09-02, 12:281dv501-lekt2

Page 16 of 19about:srcdoc

Operator shortcuts
Python allows certain short cuts for frequently used statements.
The following statements

In [68]:

n = n + 1 # Increase value of n by 1
m = m - 1 # Decrease value of m by 1
a = a + 2 # Increase value of a by 2

can also be written as

In []:

n += 1 # Increase value of n by 1
m -= 1 # Decrease value of m by 1
a += 2 # Increase value of a by 2

The short cuts above also works for other operators like *,/,%, ...
Many other programming languages use n++ (and) to increase/decrease by 1, this does not work in
Python.

Reading User Input

In [71]:

s = input('Guard: Halt! Who goes there? ')
print(s)
print('Type: ', type(s))

We can read user input using the function input()
When executed, it halts execution and waits for user input (from the keyboard)
input() always returns a string

Reading Numbers

King Arthur
Type: <class 'str'>

2020-09-02, 12:281dv501-lekt2

Page 17 of 19about:srcdoc

In [72]:

Read string and then convert to integer
s = input("Enter an integer: ") # A string like "123"
n = int(s) # Convert to int
Read and convert in one line
m = int(input("Enter another integer: ")) # Shortcut
print(n, " + ", m, " = ", n+m)

input() returns a string -> must be converted before we continue
int(input(...)) -> read and convert in one go

Programming Examples - BMI

Exercise
Write a program bmi.py which computes the BMI (Body Mass Index) for a person. The program will read
length and weight from the keyboard and then present the result as output. The BMI is computed as
weight/(length)^2 , where the length is given in meters and the weight in kilograms. The BMI is

always a (correctly rounded) integer .

Weight and length are floats , BMI is an int
How to round of a float to an integer ?

Try to have a plan before you start to program
Take small steps) add a few lines ...
... and print intermediate results along the way

In [73]:

Read input
length = float(input("Your length in meters: "))
weight = float(input("Your weight in kilograms: "))
Compute BMI
bmi = weight/length**2
bmi = round(bmi)
Present result
print("\nYour BMI is",bmi)

12 + 34 = 46

Your BMI is 23

2020-09-02, 12:281dv501-lekt2

Page 18 of 19about:srcdoc

Programming Examples - Pick a digit

Exercise
Write a program pickdigit.py which reads a three-digit integer and then prints the middle digit.

An example of an execution:

Enter a three-digit integer: 257
The second digit is 5

Q: How to extract middle digit from an integer?

...

A: Remove last digit with integer division (n==10) and
... then pick the last remaining digit with modulus (n%10)

Pick a digit - Solution

In [74]:

Read input, an integer
n = int(input("Enter a three-digit number: "))
Pick mid digit from n = 234
n = n//10 # n = 23
n = n%10 # n = 3
Present result
print("The second digit is",n)

Note
Try to have a plan before you start to program
Attack hard parts/problems first,
then add the remaining parts

The second digit is 4

2020-09-02, 12:281dv501-lekt2

Page 19 of 19about:srcdoc

About the assignment exercises ...
We have two goals with our assignment exercises

1. Practice Python programming

a lot of exercises using different language constructs

1. Enhance problem solving skills

Exercises often comes with a problem to solve

Suggested solution strategy

1. Solve the problem -> a solution idea (maybe a sketch on the paper)
2. Translate your solution to a Python program

Do not start programming without a solution idea, it will most likely not show up as a miracle while
programming
Solve the hard part first, add "read input" and "present result" afterwards

Until next lecture ...
Start working on the Lecture 2 exercises in Assignment 1
Visit the tutoring sessions
Bring your laptop to the tutoring sessions

For each lecture (recommended)

Read corresponding sections in textbook by Halterman
Read and understand the lecture slides
Work on the corresponding programming exercises

In []:

