16/09/2020

Session 5

+ 1DV501

Writing Functions

e Writing your own functions

» Parameter passing

» Global variables

o Default parameters

» Organizing one file programs

» A separate file with only functions
» Recursion (Introduction)

o If time permits

» Documenting functions
« Functions as parameters

Reading instructions: 7.1-7.3, 8.1-8.5

The important parts are 7.1-7.2, 8.1-8.4

In [1]:

Function definition
def increment(n):

p=n+1 # Function body
return p
In [2]:

Program starts

x =1

y increment(x) # Call function increment
print(x,y) # Output: 1 2

p =7

q = increment(p) # Call function increment
print(p,q) # Output: 7 8

12
7 8

» Thecode def increment(...) ... definesanew function named increment

« We later call this function as g = increment(p)

» A function must be defined before they are used -> above the code that is using it
« Execution starts in the program and jumps temporarily to increment each time it is called.

localhost:8888/lab

session_5

1/22

16/09/2020 session_5

A function with no return values

In [3]:

Function definition with no return
def print countdown(n):
if n < 1:
print ("It must be a positive number!")
else:
for i in range(n,-1,-1):
print (i, end=" ")
print() # line break

In [4]:

Program starts
print countdown(10) # Output: 10 9 8 7 6 5 4 3 2 1
print countdown(-1) # Output: It must be a positive number!

109876543210
It must be a positive number!

e The variable n in the function definition is called a parameter
» The values used the call (10 and -1) are called arguments

« A function can have zero or more return values. The example above has zero return values.

Multiple parameters and return values

In [5]:

Function with multiple parameter values
def add all(a, b, c):
return a+b+c

Function with multiple return values
def increase decrease(n):

a=n+1
b=n-1
return a, b # Return two values
In [6]:
Program starts
x = add_all(1,2,3) #x =6
P, d = increase decrease(x) # Take care of two return values
print(p, q) # Output: 7 5
75

localhost:8888/lab

2/22

16/09/2020

session_5

Function add_all has three parameters and one return value
Function increase decrease has one parameter and two return values
Returning two values -> handle the return values using a multi-assignment p, g =

increase decrease(x)

Functions - Rules

The def keyword marks the beginning of the function’s definition

Each functions has a name that we later on use to call it

A function may have zero or more parameters

A function with N parameters requires N arguments when called

The function body (block in figure above) makes use of the parameters to compute and return zero or
more results

Keyword return -> function execution stops (and returns to the call site)

Functions must be defined before (in the code) they are called

Two functions in one file can not have the same name \ra no function overriding

Functions - Best practice

Pa

In

def

Functions are named in the same way as variables. That is, they start with a lower case letter and words are
separated by an underscore.

\textbf{Try to make your methods reusable}. They should do one thing, and they should do it in a good way.
Example: The function sort and print(...) should probably be split into functions sort(...) and
print(...) since itis much more likely that each one of the shorter functions can be reused later on

When to use functions? \begin{itemize} \footnotesize

When your program starts to get too long \ra divide it into smaller parts \ra divide into functions

When you repeat the same type of computations many times \ra make a function of the computation and
call it many times.\ Advantages: Shorter code and easier to update function (than multiple occurrences of
similar code) when error in computation discovered.

Functions are name given computations \ra makes program easier to understand. For example, consider a

function is prime number (n) , the name says that we check if a given number is a prime number.

rameter passing and local variables

[7]:

add one(n):
n=mn++1

localhost:8888/lab

3/22

16/09/2020 session_5

In [8]:

Program starts
a = 10

add one(a)
print(a)

n=>5
add_one(n)
print(n)

10
5

» Q: What is printed in the two cases?

o Parameter n infunction add one is alocal variable -> not same n as in the program below

o Atthecall add one(n) , parameter n inside add one is assigned the value 5 and updates it. However,
the update has no effect on the program since n is not the same variable as the program variables n and
a.

« Parameters and variables defined inside a function are local to that function \ra they are not the same
parameters/variables that are used in other functions or in the main program.

Local variables

1. Parameters and variables defined inside a function are local to that function they are not the same
parameters/variables that are used in other functions or in the main program the same parameter/variable
name can be used in different functions without any conflict.

2. The memory required to store a local variable is used only when the variable function is executed.

* When the program’s execution leaves the function, the memory for that variable is freed up.

Property 1 is very import for practical reasons, property 2 is only import for very large programs (or in programs
with very many function calls).

Global variables (1)

In [9]:

Introduce two global variables
nl =0
n2 =0

def get input():
global nl, n2
nl = int(input("Enter integer 1: ")) # Update global nl
n2 = int(input("Enter integer 2: "))

localhost:8888/lab 4/22

16/09/2020 session_5

In [10]:

Program starts
get input() # Assigns new values to nl and n2
print(f"Integer 1 is {nl} and Integer 2 is {nl}") # Use global nl

Enter integer 1:

ValueError Traceback (most recent call 1
ast)
<ipython-input-10-3d61e7770476> in <module>

1 # Program starts
-—---> 2 get _input() # Assigns new values to nl and n2

3 print(f"Integer 1 is {nl} and Integer 2 is {nl}") # Use global
nl

<ipython-input-9-8e4260b448eb> in get input()
5 def get input():

6 global nl, n2
_—— 7 nl = int(input("Enter integer 1: ")) # Update global nl
8 n2 = int(input("Enter integer 2: "))

"

ValueError: invalid literal for int() with base 10:

» Variables defined before any functions are global variables
» Global variables can be accessed in all functions and in the main program
» Warning: Global variables makes program hard to read try to avoid them

In []:

z = 'Jag ar inne i en funktion.'

def whats in me():
print(z)

In []:

whats_in me()

Global variables (2)

localhost:8888/lab 5/22

16/09/2020 session_5

In [11]:

n =0 # Global variable n

def set global 1(a):
global n
n=a # Updates global variable n
def set global 2(a):
n = a # Updates local variable n
def get global():
return n # Returns global n, no declaration needed

In [12]:

set global 1(5)
print(n) # Print global n, output: 5

5

In [13]:

set global 2(7)
print(n) # Print global n, output is still 5

5

In [14]:
print(get global()) # Print current global value ==> Output: 5

5

» To update a global variable inside a function you need to declare it as global
» Not declared as global -> considered as introducing a new local variable
» No need to declare global when only reading a global variable

localhost:8888/lab 6/22

16/09/2020 session_5

Organizing single file programs

Recommended file organization:

Simplest possible

1. Import statements
2. Global variables

3. Function definitions
4. Program starts

This approach is used so far

or...

Using a main function

1. Import statements

2. Global variables

3. Function definitions

4. A function main() containing the program
5. Acallto main() to start the program

This approach sometimes used in the textbook
Motivation for using main() :
» Functions help to organize our code.

« The name main for the controlling function is arbitrary but traditional; several other popular programming
languages (C, C”, Java, C#, Objective-C) require such a function and require it to be named main.

The main () function approach

localhost:8888/lab 722

16/09/2020 session_5

In [15]:

def increase(n):
return n + 1

def decrease(n):
return n - 1

def main(): # Function representing program
p =7
p = increase(p)

p = increase(p)
q=7
g = decrease(q)
print(p, q)

In [16]:

main()

9 6

Note: Feel free to use the main() function approach. No need for doing it in simple/short programs as long
as the code is easy to read.

Default Parameters (1)

» Python allows us to give certain parameters a default value -> values to be used if parameter not used

In [17]:
Prints all integers in range [n,m] on a single line
def print range(n = 0, m = 5):
for i in range(n, m + 1):
print(i, end=" ")
In [18]:

print range() # Use default values ==> 0 1 2 3 4 5

012345

In [19]:
print range(6, 10) # Non-default values ==> 6 7 8 9 10

6 78 9 10

localhost:8888/lab 8/22

16/09/2020 session_5
In [20]:
print range(3) #n =3, m=5==> 3405

345

The function parameters default valuesare n = 0, m = 5

e Call print range() -> both default values are used

o Call print range(6, 10) ->overrides default values -> defaults are not used
» Call print_range(3) ->overrides 1st default, 2nd default values is used

Default Parameters (2)

In [21]:
def print range(n, m = 5): # Only 2nd parameter has default value - OK!
for i in range(n, m + 1):
print(i, end=" ")
In [22]:
def print range(n = 0, m): # Only Ilst parameter has default value - Error!
for i in range(n, m + 1):
print(i, end=" ")

File "<ipython-input-22-f8abb9d2633b>", line 1
def print range(n = 0, m): # Only lst parameter has default value -
Error!

A

SyntaxError: non-default argument follows default argument

A parameter with a default value is called a default parameter

A function can have any number of default parameters

However, the default parameters must come in the end of the parameter list

A default parameter (n = 0) can not be followed by non-default parameter (m)

localhost:8888/lab 9/22

16/09/2020

Using multiple .py -files
» Dividing your program into several files is simple:
My library (or module) file B.py

def increase(n):
return n I 1

def decrease(n):
return n - 1

« Simple library (or module) -> a collection of functions
» Functions can be re-used in many programs

« The library file must be in the same directory as the program for this simple approach to work

» A necessary approach when your program gets larger

Using functions in B.py (Version 1)

In [23]:

session_5

import B # Make all functions in B available

p =7

p = B.increase(p) # B must be referenced
p = B.increase(p)

p = B.decrease(p)

In [24]:

print(p)

8

Using functions in B.py (Version 2)

In [25]:

from B import increase, decrease

7

increase(p) # No need to reference B
increase(p)

decrease(p)

's 'O 'O 'O
1l

localhost:8888/lab

10722

16/09/2020

In [26]:
print(p)
8

session_5

Programming example has XandY (str)

 Inside a file xandy.py , write a function has_XandY(str) returning True if the inp_ut string str

» Also, inside file xandy.py , present a short program that demonstrates how the function can be used.

contains both the upper case letters X and X (and False otherwise).

= That is, the strings abbX, aYbx,and YYYY should all return False whereas:
= YbbX, XXYYXX,and XYlofon should all return True .

Solution: has XandY(str)

In [31]:

def

def

has XandY(str):

X, y = False, False

for ¢ in str:

if ¢ == 'X':
x = True
elif ¢ == 'Y':
y = True

return x and y

test _and print(s):

if has XandY(s):

For each character in string

Both must be true

print(s, "contains both X and Y")

else:

print(s, "doesn't contain both X and Y")

In [32]:

has XandY('XY')

Out[32]:

True

In [33]:

test _and print('b")

b doesn't contain both X and Y

localhost:8888/lab

11/22

16/09/2020 session_5

Recursion - An introduction
Recursion: A solution to a problem based on a smaller (but similar) problem.
Example: The sum of all integers inrange 1 to n

$S(n) =\sum_{i=1}*ni=1+2 + 3 +\cdots $

In [34]:

Computes the sum 1+2+3+...n for any n > 0

def sum(n):
s =0
for i in range(l,n+l):
s =s + 1
return s

In [35]:

Program starts
p = sum(100)
print("The sum 1+2+3+4+...+100 is ", p)

The sum 1+2+3+4+...+100 is 5050

Computing sum using smaller sums
$S(n) =\sum_{i=1}*n i = \underbrace{1 + 2 + 3 + \cdots + (n-2) + (n-1)}_{S(n-1)} + n$
» The problem can be expressed using a smaller problem: $S(n)= S(n-1) + n$

e« Ex:S5(5)=S(4)+5
= And moving on ...

- S(4) = S(3) + 4
- S(3) = 8(2) + 3
- 5(2) = S(1) + 2
- S(1) = S(0) + 1

- S(0) = S(-1) + 0 222

In [36]:

WARNING

def sum rec(n):
return n + sum rec(n-1)

localhost:8888/lab 12/22

16/09/2020 session_5

In [37]:
sum_rec(5)

RecursionError Traceback (most recent call 1
ast)

<ipython-input-37-67d8e8849a46> in <module>

—-===> 1 sum _rec(5)

<ipython-input-36-382c33779729> in sum rec(n)

2
3 def sum rec(n):
-——-> 4 return n + sum rec(n-1)

... last 1 frames repeated, from the frame below ...

<ipython-input-36-382c33779729> in sum rec(n)

2
3 def sum_rec(n):
—_———> 4 return n + sum rec(n-1)

RecursionError: maximum recursion depth exceeded

Arithmetic Sum: Introducing a Base Case

» We need a base case to terminate the computation.
« We choose to set the base case to $S(1) = 1$
= $S(0) = 0% would also work.
« The base case is expressed as a fact, not referring to any smaller problems.
» We now have a recursive definition:

\begin{align} S(n) = \left\{ \begin{array}cl} 1 & n = 1 (base\ case) \\ S(n-1) + n & n\geq 2 (recursive\ step) \\
\end{array} \right. \end{align}

» As arecursive Python function

We must find a base case -> a case where it all stops!

In [38]:

A base case 1s needed!

Recursive computation 1+2+3+...n for any n > 0
def sum rec(n):
Base case
if n == 1:
return 1
Recursive case
else:
return n + sum rec(n-1) # A recursive call

localhost:8888/lab 13/22

16/09/2020 session_5

In [39]:
sum_rec(100)
out[39]:

5050

« Recursion in practice -> a function calls itself
« the function will continue to call itself and repeat its behavior until some condition is met to return a result.

Executing recursive sum

sum_rec(5)
sum_rec(4)
sum_rec(3)
sum_rec(2)

sum_rec(1l)

return 1 // base case
return 2 + 1 (= 3)
return 3 + 3 (= 6)
return 4 + 6 (= 10)
return 5 + 10 (= 15)

Recursion

« Compute a solution to a problem using a smaller (but similar) problem is called recursion.

» In general, recursion -> a method calls itself.

« In order not to be trapped in an inifinite loop, a base case (at least one) must be part of the definition.
» Everything that can be done recursively, can also be done iteratively but not always as easy.

» Recursive definitions and algorithms are common in mathematics and computer science.

» Well-known problems where recursion helps: Fibonacci numbers, Binary search trees

Simple palindrome: A recursive definition

« Astring is a simple palindrome if it has the same text in reverse.
« Examples: x, anna, madam, abcdefedcba, yyyyyyyy
« A palindrome can be defined as:
= An empty string is a palindrome
= A string with the length 1 is a palindrome.
= A string is a palindrome if the first and last characters are equal, and all characters in between is a
palindrome.
« 1and 2 are our base cases
» 3is our recursive step

localhost:8888/lab 14/22

16/09/2020 session_5
In [40]:

inp 1is text to be checked,
p and q are first and last positions in text

def is palindrome rec(inp , p, d):
if q <= p:
return True
elif inp [p] != inp [qg]:
return False
else:
return is palindrome rec(inp , p+l, g-1)

In [41]:

Programs starts
s = "madam"

if is palindrome rec(s,0,4):
print(s, "is a palindrome")
else:
print(s, "is not a palindrome")

madam is a palindrome

Notice: We must not only call is palindrome rec with the text to be checked, we must also provide the
first and last positions in the text

Recursive helper functions

Avoid having to provide (the rather ugly) first and last positions in the text to be checked using a recursive help
function

In [42]:

Help function that initializes the recursive function
def is palindrome(str):
p =20 # First position

g = len(str) -1 # Last position
return is palindrome rec(str, p, q)

localhost:8888/lab 15/22

16/09/2020 session_5

In [43]:

Programs starts

s = "King Arthur"

if is palindrome(s): # A better looking call
print(s, "is a palindrome")

else:

print(s, "is not a palindrome")

King Arthur is not a palindrome

« Hence, by introducing a help function we can avoid providing first and last positions in the text to be
checked -> a better looking function is_palindrome

Example: The Fibonacci Sequence

 In the Fibonacci sequence the first two numbers are 0 and 1 and the others are the sum of the two previous
numbers.

o, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

« The next number is found by adding up the two numbers before it

» Exercise: Write a recursive function £ib(n) computing the n:th number in the Fibonacci sequence. For
example fib(0) = 0, fib(1l) = 1,and fib(6) = 8.

In [44]:

def fib(n):
if n == 0:
return 0
elif n ==
return 1
else:
return fib(n-1) + fib(n-2)

In [45]:

print(fib(6))
print(fib(15))

8
610

localhost:8888/lab 16/22

16/09/2020 session_5
In []:
11!

for i in range(0, 51):
print (i, fib(i))

0 Jo Ul WN P O

)
= o

w
(SIS
%

89

144
233
377
610
987
1597
2584
4181
6765
10946
17711
28657
46368
75025
121393
196418
317811
514229
832040
1346269
2178309

WWWNNMNMNNMNNMNNNNNNRRRRRRR R
NP OWOWNOUE WNREOWOOW-NLIO U S WN

In []:

$timeit fib(6)

In []:

$timeit fib(15)

In []:

import time

no_ = 34

tl = time.time()

print (f'Fibonacci number sequence {no } is {fib(no_)}. calculated in: {time.time()-
t1l} seconds')

localhost:8888/lab 17/22

16/09/2020 session_5

In []:

$%timeit
fib(34)

The First 50 Fibonacci Numbers

» Result: The printing goes slower and slower and then dies.

Exponential Number of Calls

Computing £ib(5)

fib(5) takes 15 calls to fib(N).

fib(6) takes 25 calls to fib(N).

fib(50) takes an enormous amount of calls to fib(N).

All values between 1 and N -> the number is proportional to $2AN$ -> the computer crashes for $N = 50%.

In []:

2*%%5]1

This has to be done in another way

In []:

fo, f1 =10, 1
for i in range(2,51):
f = f0 + f1

print (i, £f)
f0o = f1
fl1 = f£

Recursive functions (in general)

« A recursive method consists of:
= One or more base cases where "simple" results are given explicitly.
= One or more recursive rules (or steps) where "larger" results are expressed using "smaller" results.

« We use recursive rules until a problem has been reduced to size where a base case can be used.
» No base case -> infinite recursion -> program will crash.

Crash

localhost:8888/lab 18/22

16/09/2020 session_5

In []:

Start an infinite recursive call
def infinite(n):

infinite(n+l) # No base case ==> will never stop
In []:

Program starts
infinite(0)

If time permits

Function documentation

In []:

def gcd(a, b):
"""The Euclidean algorithm for computing the greatest
common divisor of integers a and b. First presented 300 BC. e

while a != b:
if a > b:
a=a->»>,
else:
b=Db-a
return a
In []:

Program starts
p = gcd(60,45)
print(p) # Output: 15

» The recommended approach to document a function in Python is inside """ ... """ (triple quotes)in
the beginning of the function body.
» Software tools can extract this information and generate code documentation
e One usually document
= a) the purpose of the function
= b) The role of each parameter (value type and what it means)
=) the return value (value types and what it means)
= d) a reference (if idea taken from someone else)

Functions as values

localhost:8888/lab 19/22

16/09/2020 session_5

In []:

from math import sqrt

X = sqgrt # Assign function sqrt to variable
print(x(16), type(x)) # Apply function sqrt using variable x
sgrt = 7 # Redefine sqrt ==> sqrt no
print(sqrt, type(sqrt)) # longer a function (in this program)
In []:

print = 7 # Redefine print

print("hello") # Error, print function no longer available
In []:

del print

» Functions are also a type of values in Python. They can be assigned to variables and used as parameters in
calls.

« Function names can be redefined -> they lose the original functionality (Be careful, redefining function
names is usually a bad idea.)

Functions as parameters

In []:

def plus(a, b):
return a + b

def minus(a, b):
return a - b

def apply op(a, b, op): # Expects two numbers and a function
return op(a,b) # with two parameters as input
In []:

Program starts

p = apply op(6, 3, plus) # Use plus(a,b) as argument
q = apply op(6, 3, minus) # Use minus(a,b) as argument
print(p, q) # Output: 9 3

» The function apply op(a, b, op) expectstwo numbers and a function with two parameters as input
» We call it by providing a two-parameter function (like plus) as an argument
» An "advanced" concept" that will be used later on, not part of Assignment 2

localhost:8888/lab 20/22

16/09/2020 session_5

Programming Example - Multiplication
Exercise:

Write a recursive method mult(a,b) that computes the multiplication $a\cdot b$ with the use of addition.
You can assume that both a and b are positive. Add also code that show how the recursive function mult
can be used.

Solution idea
\begin{align} a\cdot b = \left\{ \begin{array}{cl} a & b = 1 (base\ case) \\ a + a\cdot (b-1) & b > 1 (recursive\ step)

\\ \end{array} \right. \end{align}

» The recursive step decreases the value of b
» Hence, repeat the recursive step until we reach the base case

Solution - Recursive multiplication

In [2]:

def mult(a,b):
if b ==
return a
else:
return a + mult(a,b-1)

In [3]:

Program starts
print(mult(3,7))
print(mult(15,15))

21
225

» Recursive solutions are not that hard to understand. However, coming up with the solution idea takes a bit
more practice.

In [4]:
print(mult(3,5))

15

And worth looking at:

Intro to recursion: https://youtu.be/AfBqVVKg4GE (https://youtu.be/AfBqVVKg4GE)

localhost:8888/lab 21/22

https://youtu.be/AfBqVVKg4GE

16/09/2020 session_5

In []

localhost:8888/lab 22/22

