
Tuples, sets, and dictionaries

1DV501/1DT901 - Introduction to Programming

Jonas Lundberg, office B3024

Jonas.Lundberg@lnu.se

Lecture slides are available in Moodle

September 30, 2020

Computer Science

Tuples, sets, and dictionaries 1(34)

Today ...

I Data structures in general

I Tuples

I Sets

I Dictionaries

I Various left-overs

I Mini-project information (Not completed)

Reading instructions:

Computer Science

Tuples, sets, and dictionaries 2(34)

Data Structures – Introduction

I We often need to handle large sets of data

I A data structure is a model for storing/handling such data sets

I Scenarios where data structures are needed

1. Students in a course
2. Measurements from an experiment
3. Queue to get an apartment at our campus
4. Telephone numbers in Stockholm

I Different scenarios require different data structure properties

I Data should be ordered
I Not the same element twice
I Data come in pairs or have relations between them
I Important that look-up is fast
I In general: Important that operations X,Y,Z are fast

I Selecting data structure is a design decision ⇒ might affect performance,
modifiability, and program comprehension.

Data structures in general Computer Science

Tuples, sets, and dictionaries 3(34)

A Few Common Data Structures
List A sequential collection where each element has a position. In

principal: a growing/flexible sequence of data

Queue A sequential collection with add and remove at different sides
⇒ a FiFo (First in, First out)

Stack A sequential collection with add and remove at the same side
⇒ a LiFo (Last in, First out)

Deque A sequential collection with add and remove at both sides
(Deque = Double-Ended Queue)

Set A non-ordered collection not containing the same element twice
⇒ Trying to add X twice ⇒ the second attempt is ignored

Map (or Table or Dictionary) A set of key/value pairs
Operations: put(key,value), get(key) --> value

Tree Data ordered as a tree with a root (Will be presented later)
Example: The file system on your hard drive

Graph Data (nodes) with binary relations (edges)
Example: A road map with cities (nodes) and roads (edges)
between them. Not part of this course.

Data structures in general Computer Science

Tuples, sets, and dictionaries 4(34)

Sequential Data Structures

Sequential ⇒ a sequence where each element has a position.
Stack (Last in, first out) Add and remove at one side only.

push7 2 8 9 2peek()

push()

pop()

top

Queue (First in, first out) Add at one side, remove at the other.

7 2 3 5 9 0dequeue() enqueue()

first last

Note: Stack and Queue has a very limited set of operations

⇒ they are the most simple data structures

Sequential Data Structures Computer Science

Tuples, sets, and dictionaries 5(34)

Deque and List

Deque (Double-ended Queue) Add and remove at both sides.

7 2 3 5 9 0

addFirst() addLast()

removeLast()removeFirst()

List (Add and remove everywhere)

7 2 3 5 9 0

get(1)

remove(2) addAt(8,4)

add(4)

I Note: List is the most general sequential data structure

I Q: Why not always use a list?
I A specialized data structure can be more efficient (time, memory).
I A specialized structure provides a more precise model

⇒ easier to understand for someone who reads the code
Sequential Data Structures Computer Science

Tuples, sets, and dictionaries 6(34)

Tree

Tree

I A unique node (A) called the root with no parent node

I All other nodes have one parent and zero or more children

I Nodes with no children (e.g. K,L, F) are called leafs

Trees are very good at organizing things that are hierarchical. For example,

directories on our hard drive.

Sequential Data Structures Computer Science

Tuples, sets, and dictionaries 7(34)

Graph

Graph

I A set of nodes connected with edges

I All nodes can connect to any other nodes

I Edges might have labels adding information to the connection

Graphs are very good at displaying networks, or any data set where the

different data points (nodes) are connected with each other.

Sequential Data Structures Computer Science

Tuples, sets, and dictionaries 8(34)

Data Structures – Definition
A data structure is defined by:

1. a name

2. the type of data that can be stored

3. a number of operation definitions

Note: What type of implementation that is used is not a part of the definition.
Example:

I Name: StringStack

I Data type: Strings

I Operations
I push: Add a string at the top of the stack
I pop: Return (and remove) the string at the top of the stack
I peek: Return (without removing) the string at the top of the stack
I size: Returns the current number of strings in the stack
I ...

Note: This is more of a description rather than a formal definition. We
can use mathematics (so-called formal specifications) to properly define
the semantics of each operation.

Sequential Data Structures Computer Science

Tuples, sets, and dictionaries 9(34)

Introduction to tuples

tpl = (1,2,3,4,5) # Create a new tuple

print(tpl, type(tpl)) # (1, 2, 3, 4, 5) <class 'tuple'>

a = tpl[2] # Access element at position 2

print(a, type(a)) # 3 <class 'int'>

b = tpl[1:3] # Slice elements at positions 2 and 3

print(b, type(b)) # (2, 3) <class 'tuple'>

for n in tpl: # Iterate over all tuple element

print(n, end=" ")

print() # 1 2 3 4 5

I Tuples are a sequential data structure

I Tuples are created using parentheses like (1,2,3,4,5)

I Elements can be accessed individually (e.g. tpl[2]) or as slices (e.g. tpl[1:3])

I Easy to iterate over all elements: for n in tpl: ...

Tuples Computer Science

Tuples, sets, and dictionaries 10(34)

Creating new tuples

odd = (1,3,5) # Create a new tuple object

even = (2,4,6)

zero = 3*(0,0) # Tuple multiplication

tpl = odd+even+zero # Tuple concatenation

print(tpl) # (1, 3, 5, 2, 4, 6, 0, 0, 0, 0, 0, 0)

one = (1)

two = (2,) # Notice comma inside parentheses

three = 3*(1,)

empty = ()

print(one, type(one)) # 1 <class 'int'>

print(two, type(two)) # (2,) <class 'tuple'>

print(three,type(three)) # (1, 1, 1) <class 'tuple'>

print(empty,type(empty)) # () <class 'tuple'>

I Tuples can be concatenated and multiplied to form new tuples

I () is the empty tuple and (2,) is tuple with one element

I Notice: You need a comma to create tuples with only one element,
Python interprets (1) as the integer 1.

Tuples Computer Science

Tuples, sets, and dictionaries 11(34)

Tuples are immutable
Immutable ⇒ can not be modified once created

tpl = (1,2,3,4,5) # Create a new tuple

tpl[2] = 99 # Error since immutable

del tpl[2] # Error since immutable

Tuples have only two methods

tpl = (2,2,5,5,5) # Create a new tuple

print(tpl.count(5)) # 3, Number of times 5 occurs in tuple

print(tpl.index(5)) # 2, First position of 5

Heterogeneous data

tpl = (2,(5,6,7), "Hello", [89,10])

Tuples (like lists) can hold heterogeneous data types

Tuples Computer Science

Tuples, sets, and dictionaries 12(34)

Lists vs Tuples

Tuples are a lighweight version of lists. The most significant difference is that

tuples are immutable.

Tuples Computer Science

Tuples, sets, and dictionaries 13(34)

Convert between tuple and list
Convert between tuple and list is easy using list() and tuple()

lst = list(range(1,6)) # Range to list

tpl = tuple(lst) # List to tuple

print(lst, tpl) # [1, 2, 3, 4, 5] (1, 2, 3, 4, 5)

tpl = tuple(range(10,51,10)) # Range to tuple

lst = list(tpl) # Tuple to list

print(lst, tpl) # [10, 20, 30, 40, 50] (10, 20, 30, 40, 50)

Built-in functions work as expected for tuples

tpl = tuple(range(5))

print(tpl) # (0, 1, 2, 3, 4)

print(len(tpl)) # 5

print(min(tpl)) # 0

print(max(tpl)) # 4

print(sum(tpl)) # 10

Tuples Computer Science

Tuples, sets, and dictionaries 14(34)

Unpacking tuples
Unpacking ⇒ assign tuple content to variables.

tpl = (1,2,3) # Create tuple

a, b, c = tpl # Unpacking tuple

print(a,b,c) # Output: 1 2 3

Functions returning multiple values are actually returning tuples.

def m(): # Function returning three values

x, y, z = 5, 6, 7

return x,y,z

Program starts

p = m() # Receive multiple values as a tuple

print(p, type(p)) # (5, 6, 7) <class 'tuple'>

x,y,z = m() # Unpack received tuple

print(x,y,z) # Output: 5 6 7

Hence, tuples and multi-assignments are closely connected
Tuples Computer Science

Tuples, sets, and dictionaries 15(34)

Tuples - A poor man’s lists?

Why bother with tuples when we have lists? After all, lists can do everything
tuples can and much more.

Tuple advantages

I Tuple are immutable ⇒ less error prone

I Tuple access (e.g. a = tpl[6]) is faster

I Tuple creation is faster

I Tuple iteration is faster

I Tuples consume less memory

Hence, use tuples if possible for large data sets and time consuming operations.

Recommendation: Use tuples when you know the sequence size in advance and

have no need for updating the sequence.

Tuples Computer Science

Tuples, sets, and dictionaries 16(34)

Introduction to Sets
Set: A non-sequential data structure with no duplicate elements

st = {4,3,2,1,2,3,4}

print("Set content:", st) # Set content: {1, 2, 3, 4}

Notice: All duplicate elements are removed

Starting from an empty set

import random as rnd

st = set() # New empty set

for i in range(10): # Ten random integers in range 1 to 10

r = rnd.randint(1,10)

st.add(r) # Add if not already in set

print(len(st), st) # 6 {1, 3, 4, 5, 7, 9}

I Non empty sets are created using curly brackets (e.g. {1,2,3})

I An empty set is created using set() (not {}, {} is reserved for dictionaries)

I Sets are mutable ⇒ we can add more elements using st.add(r)

Sets Computer Science

Tuples, sets, and dictionaries 17(34)

Sets: No element order

strings = {"Hello", "Hej", "Hola", "Ciao", "Hej"}

print(strings) # {'Hej', 'Ciao', 'Hello', 'Hola'}

floats = {4.17, 2.3, -1.1, 2.3}

print(floats) # {2.3, 4.17, -1.1}

ints1 = {3, 17, -1, 6, 3}

print(ints1) # {17, 3, -1, 6}

ints2 = {5,4,3,99,1,6}

print(ints2) # {1, 99, 3, 4, 5, 6}

Notice: Output in no particular order ⇒ sets are not ordered

strings = {"Hello", "Hej", "Hola", "Ciao", "Hej"}

for s in strings:

print(s, end=" ") # Output: Hola Ciao Hej Hello

print()

Set iteration similar to list, tuple, and string iteration (but in arbitrary order)

Sets Computer Science

Tuples, sets, and dictionaries 18(34)

Sets: Non-sequential

Sets are non-sequential and non-ordered ⇒ elements have no positions, no
indexing and, no slicing

ints = {1,3,5,7,9,11}

a = ints[2] # Error

sub = ints[1:3] # Error

Non-sequential

I No positions, no indexing (e.g. ints[2]) and, no slicing (e.g. ints[1:3]

I No first element, no last element

I Iteration order is arbitrary

Sets Computer Science

Tuples, sets, and dictionaries 19(34)

Sets operations
Set is a class ⇒ comes with many methods

ints = {1,3,5,7}

ints.add(8) # Add 8 if not already in set

if 5 in ints: # Check if 5 is in set

print("5 is in the list")

ints.update({2,4,6,8}) # Add a set of elements

print(ints) # {1, 2, 3, 4, 5, 6, 7, 8}

ints.remove(5) # Removes 5 from set, KeyError if not present

ints.discard(10) # Removes x from set if present

print(ints) # {1, 2, 3, 4, 6, 7, 8}

cp = ints.copy() # New set with same elements as ints

ints.clear() # Remove all elements from ints

print(ints, cp) # set() {1, 2, 3, 4, 6, 7, 8}}

Sets Computer Science

Tuples, sets, and dictionaries 20(34)

Sets as mathematical set

Python sets support mathematical set operations like union, intersection, ...

I s.issubset(t): test whether every element in s is in t ⇒ boolean result

I s.issuperset(t): test whether every element in t is in s ⇒ boolean result

I s.union(t): new set with elements from both s and t

I s.intersection(t): new set with elements common to s and t

I s.difference(t): new set with elements in s but not in t

I s.symmetric_difference(t): new set with elements in either s or t but not
both

Not part of this course, but feel free to use them if you are comfortable with

mathematical set operations

Sets Computer Science

Tuples, sets, and dictionaries 21(34)

Python Set - Summary
Sets in Python are a non-sequential and non-ordered data structure with no
duplicate elements

I Empty sets are created using set()

I Non-empty sets are created using curly brackets like {3,1,2}

I Sets are mutable ⇒ we can add and remove elements using set methods

I Non-ordered ⇒ arbitrary iteration and print-out order

I Set iteration is simple: for s in myset: ...

I Sets support mathematical set operations like union and intersection

When to use sets

I No duplicate elements is sometimes a very useful property

I Count number of different X ⇒ add all X to a set and check the set size

I Looking up an element (i.e. x in myset) is much faster for sets compared
to lists or tuples. Implementing sets will be a part of the mini-project.

Sets Computer Science

Tuples, sets, and dictionaries 22(34)

Introduction to Dictionaries

Create dictionary

dct = {"Jonas":56, "Ola": 55, "Tobias":43, "Morgan":45, "Fredrik":36}

age = dct["Ola"] # Look up value for key "Ola"

print("Age of Ola:", age)

dct["Jonas"] = 26 # Assign "Jonas" a new value

print(dct) # Print dictionary content

Output

Age of Ola: 55

{'Jonas': 26, 'Ola': 55, 'Tobias': 43, 'Morgan': 45, 'Fredrik': 36}

I A dictionary in Python is set of key-value pairs

I Often called map or table in other programming languages

I Here ('Jonas': 56) and ('Ola': 55) are two key-value pairs

I age = dic["Ola"] ⇒ We look up the value corresponding to key "Ola"

I A dictionary is designed for a speedy look up of the value for a certain key.

Dictionaries Computer Science

Tuples, sets, and dictionaries 23(34)

Dictionaries: add and look-up

Create start dictionary

dct = {"Jonas":56, "Ola": 55, "Tobias":43, "Morgan":45, "Fredrik":36}

dct["Jesper"] = 50 # Add new key-value pair

dct["Jonas"] = 57 # Assign key "Jonas" a new value

old = dct["Jonas"] # Look up value for "Jonas" ==> OK

young = dct["Simon"] # Look up non-existing key ==> KeyError

I dct["Jesper"] = 50 ⇒ Add new key-value pair since ”Jesper” is a new key

I dct["Jonas"] = 57 ⇒ Assign a new value since ”Jonas” is an existing key

I old = dct["Jonas"] ⇒ Look up value for ”Jonas” ⇒ OK since an existing key

I young = dct["Simon"] ⇒ KeyError since key ”Simon” is missing

Dictionaries Computer Science

Tuples, sets, and dictionaries 24(34)

Starting from an empty dictionary

dct = {} # An empty dictionary

for i in range(10,16): # 10, 11, 12, 13, 14, 15

sq = i*i

dct[i] = sq # Add new key-value pair

print(dct) # {10: 100, 11: 121, 12: 144, 13: 169, 14: 196, 15: 225}

print("Dictionary size:", len(dct)) # Dictionary size: 6

I dct = {} ⇒ We create a new empty dictionary
Hence, {} is an empty dictionary and set() is an empty

I Dictionary can handle all types of keys and values

I Heterogeneous types:
{8: 44, True: right, Beta: 100, 3.4: True, Alpha: up}

I len(dct) ⇒ Dictionary size ⇒ Number of key-value pairs

Dictionaries Computer Science

Tuples, sets, and dictionaries 25(34)

Iterating over dictionary pairs

d = {"Fred" : 44, "Ella" : 39, "Owen" : 40, "Zoe" : 41}

for k in d.keys(): # Iterate over keys

print(k, end= " ") # Fred Ella Owen Zoe

print()

for v in d.values(): # Iterate over values

print(v, end= " ") # 44 39 40 41

print()

for k,v in d.items(): # Iterate over key-value pairs

print(k, v, end= " ") # Fred 44 Ella 39 Owen 40 Zoe 41

print()

I Methods d.keys() and d.values() give access to keys and values

I Method d.items() gives access to key-value pairs

I Iteration is non-ordered ⇒ they can come out in any order

Dictionaries Computer Science

Tuples, sets, and dictionaries 26(34)

Use dictionary for counting

Problem: Generate 1000 random integers in range 1-10 and print how many of each
number that is generated.

import random as rnd

count = {} # An empty dictionary

for i in range(1000):

r = rnd.randint(1,10)

if r not in count: # If r not in dictionary ...

count[r] = 0 # ... add with count zero

count[r] += 1 # Update count for key r

for k,v in count.items():

print(f"{k}\t{v}") # tab separated k,v print

Output

5 95

10 104

6 101

8 110

3 96

1 88

4 100

7 108

2 94

9 104

Dictionaries are excellent for counting how many x,y,z, ... we have found. Just

remember to initialize a new key-value pair (x,0) the first time you see a new x.

Dictionaries Computer Science

Tuples, sets, and dictionaries 27(34)

Grouping elements using dictionaries
Problem: Generate 20 random integers in range 1-100 and group them as odd or even.

import random as rnd

Initialize groups with two empty lists

groups = {"odd":[], "even":[]}

for i in range(20):

r = rnd.randint(1,100)

if r % 2 == 0:

groups["even"] += [r] # Add r to even list

else:

groups["odd"] += [r] # Add r to odd list

for k,v in groups.items():

print(f"{k}\t{v}") # Tab separated print

Output

odd [35, 27, 41, 1, 49, 67, 13, 63, 97, 29, 79]

even [92, 54, 78, 10, 8, 72, 42, 100, 58]

groups = {"odd":[], "even":[]} ⇒ Two pairs where the values are empty lists.

Dictionaries Computer Science

Tuples, sets, and dictionaries 28(34)

Dictionary Comprehensions

List Comprehensions ⇒ a short (and fast) way to construct new lists
Dictionary Comprehensions ⇒ a short (and fast) way to construct new dictionaries

List comprehension

lst = [n**3 for n in range(2,11,2)] # n = 2,4,6,8,10

print(lst)

Dictionary comprehension

dct = {n:n**3 for n in range(2,11,2)}

print(dct)

Output

[8, 64, 216, 512, 1000]

{2: 8, 4: 64, 6: 216, 8: 512, 10: 1000}

Hence, we generate pairs (n:n**3) rather than single elements (n**3) when we use

dictionary comprehensions. The result is a new dictionary.

Dictionaries Computer Science

Tuples, sets, and dictionaries 29(34)

Data Structure Summary

I Lists, tuples, sets, and dictionaries are all data structures

I Each of them has their own set of properties

I Lists are sequential, mutable and very flexible

I Tuples (a fast and light version of lists) are sequential and immutable

I Sets are non-ordered, non-sequential, has no duplicate elements, and provides a
fast look up (compared to lists and tuples)

I Dictionaries are a non-ordered collection of key-value pairs designed to provide a
fast look up of values for a certain key.

I Consider the data structures as tools in a toolbox. Learn their properties and
how to use them.

I List are most frequently used, shortly followed by dictionaries.
They are both great!

Dictionaries Computer Science

Tuples, sets, and dictionaries 30(34)

The zip function

teachers = ("Jonas", "Ola", "Tobias", "Morgan", "Fredrik")

ages = (56, 55, 43, 45) # No age for Fredrik!

lst = list(zip(teachers,ages)) # Create list of tuples

print(lst) # [('Jonas', 56), ('Ola', 55), ('Tobias', 43), ('Morgan', 45)]

lst = [1,2,3,4]

tpl = tuple(zip(lst,ages)) # Zip list and tuple ==> tuple of tuples

print(tpl) # ((1, 56), (2, 55), (3, 43), (4, 45))

s = "Hello"

lst = list(zip(lst,s)) # Zip list and string ==> tuple

print(lst) # [(1, 'H'), (2, 'e'), (3, 'l'), (4, 'l')]

I Sequential data like strings, lists, and tuples can be zipped

I zip(a,b) ⇒ form a sequence of tuple pairs, one element from each of a and b.

I The shorter sequence decides the length of the result

I The zip result can be a list (using list()) or a tuple (using tuple())

Various left-overs Computer Science

Tuples, sets, and dictionaries 31(34)

The join method for strings

teachers = ("Jonas", "Ola", "Tobias", "Morgan", "Fredrik")

print(" x ".join(teachers))

lst = [1,2,3,4]

as_strings = [str(n) for n in lst]

print(" --> ".join(as_strings))

s = "Hello"

print(",".join(s))

Output

Jonas x Ola x Tobias x Morgan x Fredrik

1 --> 2 --> 3 --> 4

H,e,l,l,o

I The join() string method returns a string by joining all the elements of a string
sequence, separated by a string separator.

I Syntax: sep_string.join(string_sequence) where string_sequence is a
sequence (list, tuple or string) containing strings, and sep_string is the string
that will separate the elements in string_sequence once they been joined.

Various left-overs Computer Science

Tuples, sets, and dictionaries 32(34)

The keywords None and pass

def is_positive(n):

if n == 0:

return # Will return None

else:

return n > 0

def tricky_function(): # Function with no return value

Not yet implemented

pass # Compilation error if removed

Program starts

print(is_positive(0)) # Output: None

p = tricky_function()

print(p) # Output: None

I The keyword pass is a null (empty) statement. Not ignored by the interpreter
but nothing will happens. The pass statement is useful when you don’t write the
implementation of a function but you want to implement it in the future.

I The None keyword is used to define a null value, or no value at all. Operations
on None will give an error.

Various left-overs Computer Science

Tuples, sets, and dictionaries 33(34)

Assignment 3 information

Due to technical problems with Gitlab and us realizing that that the deadline is much
too tough, things have changed.

I A new deadline for Assignment 3 is Wednesday, October 7, at 23.55.

I We use the Moodle submission system to submit Assignment. It is easy, just zip
the folder YourUsername_assign3 into a zip file and upload it using the
Assignment 3 submission in Moodle.

I Assignment 3 will be graded using the ECTS scale A-F (where F is Fail) and we
require you to handle all exercises marked as ”If time permits” to get the two
highest grades, A or B, and you need to handle all mandatory exercises to avoid
an F.

Mini-project information Computer Science

Tuples, sets, and dictionaries 34(34)

	Data structures in general
	Sequential Data Structures
	Tuples
	Sets
	Dictionaries
	Various left-overs
	Mini-project information

