
Writing Functions

1DV501/1DT901: Introduction to programming

Jonas Lundberg, office B3024

Jonas.Lundberg@lnu.se

The slides are available in Moodle

September 16, 2020

Computer Science

Writing Functions 1(36)

Today ...

I Writing your own functions

I Parameter passing

I Global variables

I Default parameters

I Organizing one file programs

I A separate file with only functions

I Recursion (Introduction)

I If time permits
I Documenting functions
I Functions as parameters

Reading instructions: 7.1-7.3, 8.1-8.5
The important parts are 7.1-7.2, 8.1-8.4

Computer Science

Writing Functions 2(36)

A first function example

Function definition

def increment(n):

p = n + 1 # Function body

return p

Program starts

x = 1

y = increment(x) # Call function increment

print(x,y) # Output: 1 2

p = 7

q = increment(p) # Call function increment

print(p,q) # Output: 7 8

I The code def increment(...) ... defines a new function named increment

I We later call this function as q = increment(p)

I A function must be defined before they are used
⇒ above the code that is using it

I Execution starts in the program and jumps temporarily to increment each time
it is called.

Writing Functions Computer Science

Writing Functions 3(36)

A function with no return values

Function definition with no return

def print_countdown(n):

if n < 1:

print("It must be a positive number!")

else:

for i in range(n,0,-1):

print(i, end=" ")

print() # line break

Program starts

print_countdown(10) # Output: 10 9 8 7 6 5 4 3 2 1

print_countdown(-1) # Output: It must be a positive number!

I The variable n in the function definition is called a parameter

I The values used the call (10 and -1) are called arguments

I A function can have zero or more return values. The example above has zero
return values.

Writing Functions Computer Science

Writing Functions 4(36)

Multiple parameters and return values

Function with multiple parameter values

def add_all(a, b, c):

return a+b+c

Function with multiple return values

def increase_decrease(n):

a = n + 1

b = n - 1

return a, b # Return two values

Program starts

x = add_all(1,2,3) # x = 6

p, q = increase_decrease(x) # Take care of two return values

print(p, q) # Output: 7 5

I Function add_all has three parameters and one return value

I Function increase_decrease has one parameter and two return values

I Returning two values ⇒ handle the return values using a multi-assignment
p, q = increase_decrease(x)

Writing Functions Computer Science

Writing Functions 5(36)

Functions - Rules

I The def keyword marks the beginning of the function’s definition

I Each functions has a name that we later on use to call it

I A function may have zero or more parameters

I A function with N parameters requires N arguments when called

I The function body (block in figure above) makes use of the parameters to
compute and return zero or more results

I Keyword return ⇒ function execution stops (and returns to the call site)

I Functions must be defined before (in the code) they are called

I Two functions in one file can not have the same name ⇒ no function overriding

Writing Functions Computer Science

Writing Functions 6(36)

Functions - Best practice

I Functions are named in the same way as variables. That is, they start with a
lower case letter and words are separated by an underscore.

I Try to make your methods reusable. They should do one thing, and they should
do it in a good way. Example: The function sort_and_print(...) should
probably be split into functions sort(...) and print(...) since it is much
more likely that each one of the shorter functions can be reused later on

I When to use functions?

I When your program starts to get too long ⇒ divide it into smaller parts
⇒ divide into functions

I When you repeat the same type of computations many times ⇒ make a
function of the computation and call it many times.
Advantages: Shorter code and easier to update function (than multiple
occurrences of similar code) when error in computation discovered.

I Functions are name given computations ⇒ makes program easier to
understand. For example, consider a function is_prime_number(n), the
name says that we check if a given number is a prime number.

Writing Functions Computer Science

Writing Functions 7(36)

Parameter passing and local variables

def add_one(n):

n = n + 1

Program starts

a = 10

add_one(a)

print(a)

n = 5

add_one(n)

print(n)

Q: What is printed in the two cases? A: 10 and 5 are printed

I Parameter n in function add_one is a local variable ⇒ not same n as in the
program below

I At the call add_one(n), parameter n inside add_one is assigned the value 5 and
updates it. However, the update has no effect on the program since n is not the
same variable as the program variables n and a.

I Parameters and variables defined inside a function are local to that function
⇒ they are not the same parameters/variables that are used in other functions
or in the main program.

Writing Functions Computer Science

Writing Functions 8(36)

Local variables

I Parameters and variables defined inside a function are local to that
function
⇒ they are not the same parameters/variables that are used in other
functions or in the main program
⇒ the same parameter/variable name can be used in different functions
without any conflict.

I The memory required to store a local variable is used only when the
variable function is executed. When the program’s execution leaves the
function, the memory for that variable is freed up.

Property 1 is very import for practical reasons, property 2 is only import for

very large programs (or in programs with very many function calls).

Writing Functions Computer Science

Writing Functions 9(36)

Global variables (1)

Introduce two global variables

n1 = 0

n2 = 0

def get_input():

global n1, n2

n1 = int(input("Enter integer 1: ")) # Update global n1

n2 = int(input("Enter integer 2: "))

Program starts

get_input() # Assigns new values to n1 and n2

print(f"Integer 1 is {n1} and Integer 2 is {n1}") # Use global n1

Execution example:

Enter integer 1: 7

Enter integer 2: 9

Integer 1 is 7 and Integer 2 is 7

I Variables defined before any functions are global variables
I Global variables can be accessed in all functions and in the main program

I Warning: Global variables makes program hard to read ⇒ try to avoid them

Writing Functions Computer Science

Writing Functions 10(36)

Global variables (2)

n = 0 # Global variable n

def set_global_1(a):

global n

n = a # Updates global variable n

def set_global_2(a):

n = a # Updates local variable n

def get_global():

return n # Returns global n, no declaration needed

set_global_1(5)

print(n) # Print global n, output: 5

set_global_2(7)

print(n) # Print global n, output is still 5

print(get_global()) # Print current global value ==> Output: 5

I To update a global variable inside a function you need to declare it as global

I Not declared as global ⇒ considered as introducing a new local variable

I No need to declare global when only reading a global variable

Writing Functions Computer Science

Writing Functions 11(36)

Organizing single file programs

Recommended file organization

Simplest possible

1. Import statements

2. Global variables

3. Function definitions

4. Program starts

Approach used so far

Using a main function

1. Import statements

2. Global variables

3. Function definitions

4. A function main() containing the program

5. A call to main() to start program

Approach sometimes used in textbook by Halterman

Motivation for using main(): Functions help to organize our code.

The name main for the controlling function is arbitrary but traditional; several other

popular programming languages (C, C++, Java, C, Objective-C) require such a

function and require it to be named main.

Writing Functions Computer Science

Writing Functions 12(36)

The main() function approach

def increase(n):

return n + 1

def decrease(n):

return n - 1

def main(): # Function representing program

p = 7

p = increase(p)

p = increase(p)

q = 7

q = decrease(q)

print(p, q) # Output: 9 6

main() # Call main to start program

Feel free to use the main() function approach. Personally I (Jonas) think we can do
without it as long as we clearly signal with comments where the program starts.

Writing Functions Computer Science

Writing Functions 13(36)

Default Parameters (1)

Python allows us to give certain parameters a default value
⇒ values to be used if parameter not used

Prints all integers in range [n,m] on a single line

def print_range(n = 0, m = 5):

for i in range(n, m + 1):

print(i, end=" ")

print()

Program starts

print_range() # Use default values ==> 0 1 2 3 4 5

print_range(6, 10) # Non-default values ==> 6 7 8 9 10

print_range(3) # n = 3, m = 5 ==> 3 4 5

I The function parameters default values are n = 0, m = 5

I Call print_range() ⇒ both default values are used

I Call print_range(6, 10) ⇒ overrides default values ⇒ defaults are not used

I Call print_range(3) ⇒ overrides 1st default, 2nd default values is used

Writing Functions Computer Science

Writing Functions 14(36)

Default Parameters (2)

def print_range(n, m = 5): # Only 2nd parameter has default value - OK!

for i in range(n, m + 1):

print(i, end=" ")

print()

def print_range(n = 0, m): # Only 1st parameter has default value - Error!

for i in range(n, m + 1):

print(i, end=" ")

print()

I A parameter with a default value is called a default parameter

I A function can have any number of default parameters

I However, the default parameters must come in the end of the parameter list

I A default parameter (n = 0) can not be followed by non-default parameter (m)

Writing Functions Computer Science

Writing Functions 15(36)

Using multiple .py-files
Dividing your program into several files is simple

My library (or module) file B.py

def increase(n):

return n + 1

def decrease(n):

return n - 1

I Simple library (or module)
⇒ a collection of functions

I Functions can be re-used in
many programs

I The library file must be in
the same directory as the
program for this simple
approach to work

I A necessary approach when
your program gets larger

Using functions in B.py (Version 1)

import B # Make all functions in B available

p = 7

p = B.increase(p) # B must be referenced

p = B.increase(p)

p = B.decrease(p)

print(p) # Output: 8

Using functions in B.py (Version 2)

Make only increase and decrease available

from B import increase, decrease

p = 7

p = increase(p) # No need to reference B

p = increase(p)

p = decrease(p)

print(p) # Output: 8

Writing Functions Computer Science

Writing Functions 16(36)

Programming example: has XandY(str)

Problem

I Inside a file xandy.py, write a function has_XandY(str) returning True if the
input string str contains both the upper case letters X and X (and False
otherwise). That is, the strings abbX, aYbx, and YYYY should all return False
whereas YbbX, XXYYXX, and XYlofon should all return True.

I Also, inside file xandy.py, present a short program that demonstrates how the
function can be used.

Programming example Computer Science

Writing Functions 17(36)

Solution: has XandY(str)

def has_XandY(str):

x, y = False, False

for c in str: # For each character in string

if c == 'X':

x = True

elif c == 'Y':

y = True

return x and y # Both must be true

def test_and_print(s):

if has_XandY(s):

print(s, "contains both X and Y")

else:

print(s, "doesn't contain both X and Y")

Program starts

test_and_print("XYlofon") # True

test_and_print("Xylofon") # False

test_and_print("aXyYb") # True

test_and_print("aXyb") # False

Programming example Computer Science

Writing Functions 18(36)

A 10 minute break?

ZZZZZZZZZZZZZZZZ ...

Programming example Computer Science

Writing Functions 19(36)

Recursion - An introduction
Recursion: A solution to a problem based on a smaller (but similar) problem.

Example: The sum of all integers in range 1 to n

S(n) =
n∑

i=1

i = 1 + 2 + 3 + · · ·+ (n − 2) + (n − 1) + n

I The sum can be computed using iteration:

Computes the sum 1+2+3+...n for any n > 0

def sum(n):

s = 0

for i in range(1,n+1):

s = s + i

return s

Program starts

p = sum(100)

print("The sum 1+2+3+4+...+100 is ", p) # Output: 5050

Recursion (Introduction) Computer Science

Writing Functions 20(36)

Computing sum using smaller sums

S(n) =
n∑

i=1

i = 1 + 2 + 3 + · · ·+ (n − 2) + (n − 1)︸ ︷︷ ︸
S(n−1)

+n

I The problem can be expressed using a smaller problem:
S(n) = S(n − 1) + n

I Ex: S(5) = S(4) + 5

I And moving on ...
I S(4) = S(3) + 4
I S(3) = S(2) + 3
I S(2) = S(1) + 2
I S(1) = S(0) + 1
I S(0) = S(-1) + 0 ???

We must find a base case ⇒ a case where it all stops!

Recursion (Introduction) Computer Science

Writing Functions 21(36)

Arithmetic Sum: Introducing a Base Case
I We need a base case to terminate the computation.

I We choose to set the base case to S(1) = 1
(S(0) = 0 would also work).

I The base case is expressed as a fact, not referring to
any smaller problems.

I We now have a recursive definition:

S(n) =

{
1 n = 1 (base case)

S(n − 1) + n n ≥ 2 (recursive step)

I As a recursive Python function

Recursive computation 1+2+3+...n for any n > 0

def sum_rec(n):

if n == 1:

return 1

else:

return n + sum_rec(n-1) # A recursive call

Recursion in practice ⇒ a function calls itself

Recursion (Introduction) Computer Science

Writing Functions 22(36)

Executing recursive sum

Recursive computation 1+2+3+...n for any n > 0

def sum_rec(n):

if n == 1:

return 1

else:

return n + sum_rec(n-1)

Executing sum_rec(5) ⇒ 5 calls to sum_rec(...)

sum_rec(5)

sum_rec(4)

sum_rec(3)

sum_rec(2)

sum_rec(1)

return 1 // base case

return 2 + 1 (= 3)

return 3 + 3 (= 6)

return 4 + 6 (= 10)

return 5 + 10 (= 15)

Recursion (Introduction) Computer Science

Writing Functions 23(36)

Recursion

I Compute a solution to a problem using a smaller (but similar)
problem is called recursion.

I In general, recursion ⇒ a method calls itself.

I In order not to be trapped in an inifinite loop, a base case (at least
one) must be part of the definition.

I Everything that can be done recursively, can also be done iteratively
but not always as easy.

I Recursive definitions and algorithms are common in mathematics
and computer science.

I Well-known problems where recursion helps: Fibonacci numbers,
Binary search trees

Recursion (Introduction) Computer Science

Writing Functions 24(36)

Simple palindrome: A recursive definition

I A string is a simple palindrome if it has the same text in reverse.

I Examples: x, anna, madam, abcdefedcba, yyyyyyyy

I A palindrome can be defined as:

1. An empty string is a palindrome
2. A string with the length 1 is a palindrome.
3. A string is a palindrome if the first and last characters are equal, and

all characters in between is a palindrome.

I 1 and 2 are our base cases

I 3 is our recursive step

Recursion (Introduction) Computer Science

Writing Functions 25(36)

Simple palindrome: Python

str is text to be checked,

p and q are first and last positions in text

def is_palindrome_rec(str, p, q):

if q <= p:

return True

elif str[p] != str[q]:

return False

else:

return is_palindrome_rec(str, p+1, q-1)

Programs starts

s = "madam"

if is_palindrome_rec(s,0,4):

print(s, " is a simple palindrome")

else:

print(s, " is not a simple palindrome")

Notice: We must not only call is_palindrome_rec with the text to be checked, we

must also provide the first and last positions in the text

Recursion (Introduction) Computer Science

Writing Functions 26(36)

Recursive helper functions
Avoid having to provide (the rather ugly) first and last positions in the text to be
checked using a recursive help function

def is_palindrome_rec(str, p, q):

"... see previous slide ..."

Help function that initializes the recursive function

def is_palindrome(str):

p = 0 # First position

q = len(str) - 1 # Last position

return is_palindrome_rec(str, p, q)

Programs starts

s = "jonas"

if is_palindrome(s): # A better looking call

print(s, " is a simple palindrome")

else:

print(s, " is not a simple palindrome")

Hence, by introducing a help function we can avoid providing first and last positions in

the text to be checked ⇒ a better looking function is_palindrome

Recursion (Introduction) Computer Science

Writing Functions 27(36)

Example: The Fibonacci Sequence
I In the Fibonacci sequence the first two numbers are 0 and 1 and the others are

the sum of the two previous numbers.

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, ...

I Exercise: Write a recursive function fib(n) computing the n:th number in the
Fibonacci sequence. For example fib(0) = 0, fib(1) = 1, and fib(6) = 8.

I Solution:

def fib(n):

if n == 0:

return 0

elif n == 1:

return 1

else:

return fib(n-1) + fib(n-2)

Program starts

print(fib(6)) # Output: 8

print(fib(15)) # Output: 610

Recursion (Introduction) Computer Science

Writing Functions 28(36)

The First 50 Fibonacci Numbers
I Problem: Print the first 50 numbers in the Fibonacci sequence.

I Solution: Simple!

for i in range(0, 51):

print(i, fib(i))

I Result: The printing goes slower and slower and then dies.

I A better solution:

f0, f1 = 0, 1

for i in range(2,51):

f = f0 + f1

print(i, f)

f0 = f1

f1 = f

I Result (in less than a second)

2 1

3 2

...

49 7778742049

50 12586269025

Recursion (Introduction) Computer Science

Writing Functions 29(36)

Exponential Number of Calls
I Computing fib(5)

fib(3)

fib(1)

fib(2)

fib(0)

fib(1)

fib(0)

fib(1)
fib(2)

fib(3) fib(1)

fib(2)

fib(0)

fib(1)

fib(4)

fib(5)

I fib(5) takes 15 calls to fib(N).
I fib(6) takes 25 calls to fib(N).
I fib(50) takes an enormous amount of calls to fib(N).
I All values between 1 and N ⇒ the number is proportional to 2N

⇒ the computer crashes for N = 50.

Recursion (Introduction) Computer Science

Writing Functions 30(36)

Recursive functions (in general)
I A recursive method consists of:

I One or more base cases where “simple” results are given explicitly.
I One or more recursive rules (or steps) where “larger” results are

expressed using “smaller” results.

I Note

I We use recursive rules until a problem has been reduced to size
where a base case can be used.

I No base case ⇒ infinite recursion ⇒ program will crash.

I Crash in practice

Start an infinite recursive call

def infinite(n):

infinite(n+1) # No base case ==> will never stop

Program starts

infinite(0)

Result: The program runs for a second and crashes with a message
RecursionError: maximum recursion depth exceeded

Recursion (Introduction) Computer Science

Writing Functions 31(36)

Function documentation

def gcd(a, b):

"""The Euclidean algorithm for computing the greatest

common divisor of integers a and b. First presented 300 BC."""

while a != b:

if a > b:

a = a - b

else:

b = b - a

return a

Program starts

p = gcd(60,45)

print(p) # Output: 15

I The recommended approach to document a function in Python is inside
""" ... """ (triple quotes) in the beginning of the function body.

I Software tools can extract this information and generate code documentation

I One usually document a) the purpose of the function, b) The role of each
parameter (value type and what it means), c) the return value (value types and
what it means), d) a reference (if idea taken from someone else)

If time permits Computer Science

Writing Functions 32(36)

Functions as values

from math import sqrt

x = sqrt # Assign function sqrt to variable

print(x(16), type(x)) # Apply function sqrt using variable x

sqrt = 7 # Redefine sqrt ==> sqrt no ...

print(sqrt, type(sqrt)) # longer a function (in this program)

print = 7 # Redefine print

print("hello") # Error, print function no longer available

Output:

4.0 <class 'builtin_function_or_method'>

7 <class 'int'>

TypeError: 'int' object is not callable

I Functions are also a type of values in Python. They can be assigned to variables
and used as parameters in calls.

I Function names can be redefined ⇒ they lose the original functionality
(Be careful, redefining function names is usually a bad idea.)

If time permits Computer Science

Writing Functions 33(36)

Functions as parameters

def plus(a, b):

return a + b

def minus(a, b):

return a - b

def apply_op(a, b, op): # Expects two numbers and a function

return op(a,b) # with two parameters as input

Program starts

p = apply_op(6, 3, plus) # Use plus(a,b) as argument

q = apply_op(6, 3, minus) # Use minus(a,b) as argument

print(p, q) # Output: 9 3

I The function apply_op(a, b, op) expects two numbers and a function with
two parameters as input

I We call it by providing a two-parameter function (like plus) as an argument

I An ”advanced” concept” that will be used later on, not part of Assignment 2

If time permits Computer Science

Writing Functions 34(36)

Programming Example - Multiplication

Exercise
Write a recursive method mult(a,b) that computes the multiplication a · b with the
use of addition. You can assume that both a and b are positive. Add also code that
show how the recursive function mult can be used.

Solution idea

a · b =

{
a b = 1 (base case)

a + a · (b − 1) b > 1 (recursive step)

I The recursive step decreases the value of b

I Hence, repeat the recursive step until we reach the base case

If time permits Computer Science

Writing Functions 35(36)

Solution - Recursive multiplication

def mult(a,b):

if b == 1:

return a

else:

return a + mult(a,b-1)

Program starts

print(mult(3,7))

print(mult(15,15))

Recursive solutions are not that hard to understand. However, coming up with the
solution idea takes a bit more practice.

If time permits Computer Science

Writing Functions 36(36)

	Writing Functions
	Programming example
	Recursion (Introduction)
	If time permits

