Linnaeus Universityglﬁ

Writing Functions
1DV501/1DT901: Introduction to programming

Jonas Lundberg, office B3024

Jonas.Lundberg@lnu.se

The slides are available in Moodle

September 16, 2020

Computer Science

Writing Functions 1(36)

Linnaeus University?:is"*

Today ...

Writing your own functions
Parameter passing

Global variables

>

>

>

» Default parameters
> Organizing one file programs

> A separate file with only functions
» Recursion (Introduction)

>

If time permits

» Documenting functions
» Functions as parameters

Reading instructions: 7.1-7.3, 8.1-8.5
The important parts are 7.1-7.2, 8.1-8.4

Computer Science

Writing Functions 2(36)

Linnaeus University?:f"*

A first function example

Function definition

def increment(n):
p=n+1 # Function body
return p

Program starts

x=1

y = increment(x) # Call function increment
print(x,y) # Output: 1 2

p=7
q = increment(p) # Call function increment
print(p,q) # Output: 7 8

» The code def increment(...) ... defines a new function named increment

v

We later call this function as q = increment (p)
> A function must be defined before they are used
= above the code that is using it
> Execution starts in the program and jumps temporarily to increment each time
it is called.
Writing Functions Computer Science

Writing Functions 3(36)

Linnaeus Universityﬁ'p*

A function with no return values

Function definition with no return
def print_countdown(n):
if n < 1:
print ("It must be a positive number!")
else:
for i in range(n,0,-1):
print(i, end=" ")
print () # line break

Program starts
print_countdown(10) # Output: 10 9 8 76 5 4 3 2 1
print_countdown(-1) # Output: It must be a positive number!

» The variable n in the function definition is called a parameter
» The values used the call (10 and -1) are called arguments

> A function can have zero or more return values. The example above has zero
return values

Writing Functions Computer Science

Writing Functions 4(36)

Linnaeus University?:f"*

Multiple parameters and return values

Function with multiple parameter values
def add_all(a, b, c):
return atb+c

Function with multiple return values
def increase_decrease(n):

a=mn+1
b=n-1
return a, b # Return two values

Program starts

x = add_all(1,2,3) #zxz =6
p, q = increase_decrease(x) # Take care of two return values
print(p, q) # Output: 7 5

» Function add_all has three parameters and one return value
» Function increase_decrease has one parameter and two return values

> Returning two values = handle the return values using a multi-assignment
p, q = increase_decrease(x)

Writing Functions Computer Science

Writing Functions 5(36)

Linnaeus University?:'ﬁ"*

Functions - Rules

def name (parameterlist):

block

The def keyword marks the beginning of the function's definition
Each functions has a name that we later on use to call it
A function may have zero or more parameters

A function with N parameters requires N arguments when called

vVvyVvyvyypwy

The function body (block in figure above) makes use of the parameters to
compute and return zero or more results

v

Keyword return = function execution stops (and returns to the call site)
Functions must be defined before (in the code) they are called
Two functions in one file can not have the same name = no function overriding

Writing Functions Computer Science

Writing Functions 6(36)

Linnaeus University?:'ﬁ"*

Functions - Best practice

> Functions are named in the same way as variables. That is, they start with a
lower case letter and words are separated by an underscore.

> Try to make your methods reusable. They should do one thing, and they should
do it in a good way. Example: The function sort_and_print(...) should
probably be split into functions sort(...) and print(...) since it is much
more likely that each one of the shorter functions can be reused later on

» When to use functions?

» When your program starts to get too long = divide it into smaller parts
= divide into functions

» When you repeat the same type of computations many times = make a
function of the computation and call it many times.
Advantages: Shorter code and easier to update function (than multiple
occurrences of similar code) when error in computation discovered.

> Functions are name given computations = makes program easier to
understand. For example, consider a function is_prime_number (n), the
name says that we check if a given number is a prime number.

Writing Functions Computer Science

Writing Functions 7(36)

Linnaeus University?:'r:"*

Parameter passing and local variables

def add_one(n):
n=n-+1

Program starts
a = 10
add_one(a)
print(a)

n=>5
add_one(n)
print(n)

Q: What is printed in the two cases? A: 10 and 5 are printed

> Parameter n in function add_one is a local variable = not same n as in the
program below

> At the call add_one(n), parameter n inside add_one is assigned the value 5 and
updates it. However, the update has no effect on the program since n is not the
same variable as the program variables n and a.

> Parameters and variables defined inside a function are local to that function
= they are not the same parameters/variables that are used in other functions
or in the main program.

Writing Functions Computer Science

Writing Functions 8(36)

Linnaeus University?:'ﬁ"*

Local variables

» Parameters and variables defined inside a function are local to that

function
= they are not the same parameters/variables that are used in other

functions or in the main program
= the same parameter/variable name can be used in different functions

without any conflict.

» The memory required to store a local variable is used only when the
variable function is executed. When the program'’s execution leaves the
function, the memory for that variable is freed up.

Property 1 is very import for practical reasons, property 2 is only import for
very large programs (or in programs with very many function calls).

Computer Science
9(36)

Writing Functions

Writing Functions

Linnaeus Universityﬁ'p*

Global variables (1)

Introduce two global wartables
nl =0
n2 =0

def get_input():
global nl, n2
nl = int(input("Enter integer 1: "))
n2 = int(input("Enter integer 2: "))

Update global nl

Program starts
get_input () # Assigns new values to nl and n2

print(f"Integer 1 is {nl1} and Integer 2 is {ni1}") # Use global nl
Execution example:

Enter integer 1: 7

Enter integer 2: 9

Integer 1 is 7 and Integer 2 is 7

> Variables defined before any functions are global variables
> Global variables can be accessed in all functions and in the main program
> Warning: Global variables makes program hard to read = try to avoid them

Writing Functions Computer Science
Writing Functions 10(36)

Linnaeus Universityﬁ'i?*

Global variables (2)

n =0 # Global variable n

def set_global_1(a):
global n
n=a # Updates global variable n
def set_global_2(a):
n=a # Updates local variable n
def get_global():
return n # Returns global n, no declaration needed

set_global_1(5)
print(n) # Print global n, output: 5

set_global_2(7)
print(n) # Print global n, output s still 5

print(get_global()) # Print current global value ==> Output: 5
> To update a global variable inside a function you need to declare it as global

> Not declared as global = considered as introducing a new local variable

> No need to declare global when only reading a global variable

Writing Functions Computer Science

Writing Functions 11(36)

Linnaeus University?:'ﬁ"*

Organizing single file programs

Recommended file organization

Simplest possible

1.
2.
3.
4.

Import statements
Global variables
Function definitions

Program starts

Approach used so far

Using a main function

1.

Import statements

. Global variables

2
3.
4
5

Function definitions

. A function main() containing the program

. A call to main() to start program

Approach sometimes used in textbook by Halterman

Motivation for using main(): Functions help to organize our code.

The name main for the controlling function is arbitrary but traditional; several other

popular programming languages (C, C++, Java, C, Objective-C) require such a

function and require it to be named main.

Writing Functions

Writing Functions

Computer Science
12(36)

Linnaeus University?:f"*

The main() function approach

def increase(n):
return n + 1

def decrease(n):
return n - 1

def main(): # Function representing program
p=7
p = increase(p)
p = increase(p)
q=7
q = decrease(q)

print(p, q) # Output: 9 6
main() # Call main to start program

Feel free to use the main() function approach. Personally | (Jonas) think we can do
without it as long as we clearly signal with comments where the program starts.

Writing Functions Computer Science

Writing Functions 13(36)

Linnaeus Universityﬁ'p*

Default Parameters (1)

Python allows us to give certain parameters a default value
= values to be used if parameter not used

Prints all integers in range [n,m] on a single line
def print_range(n = 0, m = 5):
for i in range(n, m + 1):
print(i, end=" ")
print()

Program starts

print_range () # Use default values ==> 0 1 2 3 4 &5
print_range(6, 10) # Non-default values ==> 6 7 8 9 10
print_range(3) #n=3 m=5==> 345

» The function parameters default values aren = 0, m = 5

> Call print_range() = both default values are used

> Call print_range(6, 10) = overrides default values = defaults are not used
> Call print_range(3) = overrides 1st default, 2nd default values is used

Writing Functions Computer Science

Writing Functions 14(36)

Linnaeus Universityﬁf"*

Default Parameters (2)

def print_range(n, m = 5): # Only 2nd parameter has default value - OK!
for i in range(n, m + 1):
print(i, end=" ")
print ()
def print_range(n = 0, m): # Only 1st parameter has default value - Error!

for i in range(n, m + 1):
print(i, end=" ")
print()

A parameter with a default value is called a default parameter
A function can have any number of default parameters

However, the default parameters must come in the end of the parameter list

vV vyVvVvyy

A default parameter (n = 0) can not be followed by non-default parameter (m)

Writing Functions Computer Science

Writing Functions 15(36)

Linnaeus University?:f"*

Using multiple .py-files
Dividing your program into several files is simple
My library (or module) file B.py Using functions in B.py (Version 1)

def increase(n): import B # Make all functions in B available

return n + 1

p=7
def decrease(n): p = B.increase(p) # B must be referenced
return n - 1 p = B.increase(p)
p = B.decrease(p)
print (p) # Output: 8

> Simple library (or module)

— 2 collection of functions Using functions in B.py (Version 2)

»> Functions can be re-used in # Make only increase and decrease available
many programs from B import increase, decrease

> The library file must be in

the same directory as the P ~ 7
program for this simple p = increase(p) # No need to reference B
approach to work p = increase(p)

p = decrease(p)

> A necessary approach when print (p) # Output: 8
your program gets larger
Writing Functions Computer Science

Writing Functions 16(36)

Linnaeus University?:'r:"*

Programming example: has XandY(str)

Problem

> Inside a file xandy.py, write a function has_XandY(str) returning True if the
input string str contains both the upper case letters X and X (and False
otherwise). That is, the strings abbX, aYbx, and YYYY should all return False
whereas YbbX, XXYYXX, and XYlofon should all return True.

> Also, inside file xandy.py, present a short program that demonstrates how the
function can be used.

Computer Science
17(36)

Programming example

Writing Functions

Linnaeus Universityﬁ'j?*

Solution: has XandY(str)

def

def

has_XandY(str):
x, y = False, False

for c in str: # For each character in string
if ¢ == 'X":
x = True
elif = 'Y':
y = True
return x and y # Both must be true

test_and_print(s):
if has_XandY(s):
print(s, "contains both X and Y")
else:
print(s, "doesn't contain both X and Y")

Program starts

test_and_print ("XYlofon") # True
test_and_print ("Xylofon") # False
test_and_print ("aXyYb") # True
test_and_print ("aXyb") # False
Programming example Computer Science

Writing Functions

18(36)

Linnaeus University?:'r;*

A 10 minute break?

1777777777777777 ...

Programming example Computer Science

Writing Functions 19(36)

Linnaeus University?:f"*

Recursion - An introduction

Recursion: A solution to a problem based on a smaller (but similar) problem.

Example: The sum of all integers in range 1 to n
S(n)=>i=14243+-+(n—-2)+(n—1)+n

i=1
» The sum can be computed using iteration:

Computes the sum 1+2+3+...n for any n > 0
def sum(n):
s =0
for i in range(l,n+1):
s =s+1i
return s

Program starts
p = sum(100)
print("The sum 1+2+3+4+...+100 is ", p) # Output: 5050

Computer Science
20(36)

Recursion (Introduction)

Writing Functions

Linnaeus University?:'r:"*

Computing sum using smaller sums

S(n):En:i:1+2+3+--~+(n—2)+(n—1)+n

i=1

S(n—1)

» The problem can be expressed using a smaller problem:
S(n)=S(n—=1)+n

> Ex: S(5) =S(4) + 5
» And moving on ...

> S(4) =S5(3) + 4
> S(3) =5(2) + 3
> S(2) =5S(1) + 2

> S(1) = S(0) + 1
> S(0) = S(-1) + 0 777

We must find a base case = a case where it all stops!

Recursion (Introduction) Computer Science

Writing Functions 21(36)

Linnaeus University?:f"*

Arithmetic Sum: Introducing a Base Case

» We need a base case to terminate the computation.
> We choose to set the base case to S(1) =1
(5(0) = 0 would also work).
» The base case is expressed as a fact, not referring to
any smaller problems.
> We now have a recursive definition:

S(n) = 1 n=1 (base case)
= S(h—1)+n n>2 (recursive step)

> As a recursive Python function

Recursive computation 1+2+3+...n for any n > 0
def sum_rec(n):
if n ==
return 1
else:
return n + sum_rec(n-1) # A recursive call

Recursion in practice = a function calls itself

Recursion (Introduction) Computer Science

Writing Functions 22(36)

Linnaeus University?:'r"*
Executing recursive sum

Recursive computation 1+2+3+...n for any n > 0
def sum_rec(n):
if n ==
return 1
else:
return n + sum_rec(n-1)

Executing sum_rec(5) = 5 calls to sum_rec(...)

sum_rec(5)
sum_rec(4)
sum_rec(3)
sum_rec(2)
sum_rec(1)

return 1 // base case
return 2 + 1 (= 3)
return 3 + 3 (= 6)
return 4 + 6 (= 10)
return 5 + 10 (= 15)
Recursion (Introduction) Computer Science

Writing Functions 23(36)

Linnaeus University?:is"*

Recursion

| 4

Recursion (Introduction)

Writing Functions

Compute a solution to a problem using a smaller (but similar)
problem is called recursion.

In general, recursion = a method calls itself.

In order not to be trapped in an inifinite loop, a base case (at least
one) must be part of the definition.

Everything that can be done recursively, can also be done iteratively
but not always as easy.

Recursive definitions and algorithms are common in mathematics
and computer science.

Well-known problems where recursion helps: Fibonacci numbers,
Binary search trees

Computer Science

24(36)

Linnaeus University?:'r:"*

Simple palindrome: A recursive definition

> A string is a simple palindrome if it has the same text in reverse.
» Examples: x, anna, madam, abcdefedcba, yyyyyyyy
» A palindrome can be defined as:
1. An empty string is a palindrome
2. A string with the length 1 is a palindrome.
3. A string is a palindrome if the first and last characters are equal, and
all characters in between is a palindrome.
> 1 and 2 are our base cases
> 3 is our recursive step
Recursion (Introduction) Computer Science

Writing Functions 25(36)

Linnaeus Universityﬁ'p*

Simple palindrome: Python

str 1s text to be checked,
p and q are first and last positions in text
def is_palindrome_rec(str, p, q):
if q <= p:
return True
elif str[p] != strlql:
return False
else:
return is_palindrome_rec(str, p+1, g-1)

Programs starts

s = "madam"
if is_palindrome_rec(s,0,4):

print(s, " is a simple palindrome")
else:

print(s, " is not a simple palindrome")

Notice: We must not only call is_palindrome_rec with the text to be checked, we

must also provide the first and last positions in the text

Computer Science

26(36)

Recursion (Introduction)

Writing Functions

Linnaeus Universityﬁ'p*

Recursive helper functions

Avoid having to provide (the rather ugly) first and last positions in the text to be
checked using a recursive help function

def is_palindrome_rec(str, p, q):
"... see previous slide .

Help function that initializes the recursive function
def is_palindrome(str):

p=20 # First position

q = len(str) - 1 # Last position

return is_palindrome_rec(str, p, q)

Programs starts

s = "jonas"

if is_palindrome(s): # A better looking call
print(s, " is a simple palindrome")

else:
print(s, " is not a simple palindrome")

Hence, by introducing a help function we can avoid providing first and last positions in

the text to be checked = a better looking function is_palindrome

Recursion (Introduction) Computer Science

Writing Functions 27(36)

Linnaeus University?;f"*

Example: The Fibonacci Sequence

> In the Fibonacci sequence the first two numbers are 0 and 1 and the others are
the sum of the two previous numbers.

0,1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

> Exercise: Write a recursive function £ib(n) computing the n:th number in the
Fibonacci sequence. For example £ib(0) = 0, fib(1) = 1, and £fib(6) = 8.

> Solution:

def fib(n):
if n ==
return O
elif n ==
return 1
else:
return fib(n-1) + fib(n-2)

Program starts
print(£ib(6)) # Output: 8
print(£ib(15)) # Output: 610

Recursion (Introduction) Computer Science

Writing Functions 28(36)

Linnaeus University?:is"*

The First 50 Fibonacci Numbers

> Problem: Print the first 50 numbers in the Fibonacci sequence.

> Solution: Simple!
for i in range(0, 51):
print(i, fib(i))
> Result: The printing goes slower and slower and then dies.
> A better solution:

f0, f1 =0, 1
for i in range(2,51):

f = £f0 + f1
print(i, f)
f0 = f1
f1 = £

> Result (in less than a second)

21
32

49 7778742049
50 12586269025
Recursion (Introduction) Computer Science

Writing Functions 29(36)

Linnaeus University "f

Exponential Number of Calls

Computing £ib(5)
fib(1)
o fib(0)
1o)\fib(Z) = fib(1)

fib(5 / 0
\ fib2—

fiod)— = fib(Y)
fiz)—— 1@ fib(0)
fib2) —. fib(1)
fib(5) takes 15 calls to fib(N).
fib(6) takes 25 calls to fib(N).
fib(50) takes an enormous amount of calls to fib(N).

All values between 1 and N = the number is proportional to 2N
= the computer crashes for N = 50.

Recursion (Introduction) Computer Science

Writing Functions 30(36)

Linnaeus University?:f"*

Recursive functions (in general)

> A recursive method consists of:
» One or more base cases where “simple” results are given explicitly.
» One or more recursive rules (or steps) where “larger” results are
expressed using “smaller” results.
> Note
» We use recursive rules until a problem has been reduced to size
where a base case can be used.
» No base case = infinite recursion = program will crash.

> Crash in practice

Start an infinite recursive call
def infinite(n):
infinite(n+1l) # No base case ==> will never stop

Program starts
infinite(0)

Result: The program runs for a second and crashes with a message
RecursionError: maximum recursion depth exceeded

Recursion (Introduction) Computer Science

Writing Functions 31(36)

Linnaeus University?:f"*

Function documentation

def gcd(a, b):
"""The Euclidean algorithm for computing the greatest
common divisor of integers a and b. First presented 300 BC."""

while a != b:

if a > b:
a=a-b
else:
b=Db-a
return a

Program starts
p = gcd(60,45)
print(p) # Output: 15

» The recommended approach to document a function in Python is inside
nn nnn (triple quotes) in the beginning of the function body.

> Software tools can extract this information and generate code documentation

> One usually document a) the purpose of the function, b) The role of each
parameter (value type and what it means), c) the return value (value types and
what it means), d) a reference (if idea taken from someone else)
If time permits Computer Science
Writing Functions 32(36)

Linnaeus Universityﬁ'i?*

Functions as values

from math import sqrt

X = sqrt # Assign function sqrt to wvariable
print(x(16), type(x)) # Apply function sqrt using vartable z
sqrt = 7 # Redefine sqrt ==> sqrt no
print(sqrt, type(sqrt)) # longer a function (in this program)
print = 7 # Redefine print

print ("hello") # Error, print function no longer available
Output:

4.0 <class 'builtin_function_or_method'>
7 <class 'int'>
TypeError: 'int' object is not callable

> Functions are also a type of values in Python. They can be assigned to variables
and used as parameters in calls.

> Function names can be redefined = they lose the original functionality
(Be careful, redefining function names is usually a bad idea.)

If time permits Computer Science

Writing Functions 33(36)

Linnaeus Universityﬁ'p*

Functions as parameters

def plus(a, b):
return a + b

def minus(a, b):
return a - b

def apply_op(a, b, op): # Ezpects two numbers and a function
return op(a,b) # with two parameters as input

Program starts

p = apply_op(6, 3, plus) # Use plus(a,b) as argument
q = apply_op(6, 3, minus) # Use minus(a,b) as argument
print(p, q) # Output: 9 3

» The function apply_op(a, b, op) expects two numbers and a function with
two parameters as input

> We call it by providing a two-parameter function (like plus) as an argument

> An "advanced” concept” that will be used later on, not part of Assignment 2

If time permits Computer Science

Writing Functions 34(36)

Linnaeus University?:'r:"*

Programming Example - Multiplication

Exercise
Write a recursive method mult(a,b) that computes the multiplication a - b with the

use of addition. You can assume that both a and b are positive. Add also code that
show how the recursive function mult can be used.

Solution idea
D b= a b=1 (base case)
T at+a-(b—1) b>1 (recursive step)

> The recursive step decreases the value of b

> Hence, repeat the recursive step until we reach the base case

Computer Science

If time permits
35(36)

Writing Functions

Linnaeus University?:is"*

Solution - Recursive multiplication

def mult(a,b):
if b ==
return a
else:
return a + mult(a,b-1)

Program starts
print(mult(3,7))
print (mult(15,15))

Recursive solutions are not that hard to understand. However, coming up with the
solution idea takes a bit more practice.

If time permits Computer Science

Writing Functions 36(36)

	Writing Functions
	Programming example
	Recursion (Introduction)
	If time permits

