Modified F/2 -medium (EG/CEL)

Final medium:

Add 1 ml each of stocks A, B and Trace metals to 1 liter aged natural seawater. Autoclave and let cool to below 60° C. Sterile filter $(0.2 \, \mu\text{m})$ vitamin stock solution and add $0.5 \, \text{ml/L}$ medium.

In medium for diatoms also sterile filter stock C and add 1 ml/ liter.

Adjust pH to 8.2 ± 0.2 with 1.2 M HCl.

It is possible to autoclave the stock solutions $\underline{\text{except}}$ for the silica and vitamin solutions. They should be sterilized through a 0.2 μ m filter.

Stock solutions			Conc in stock	Final conc in medium	
A.	NaNO3	49.3 g	580 mM	580 μM	
B.	K_2HPO_4	6.32 g	36.3 mM	36.3 µM	
C. (diatoms)	Na_2SiO_3 . $5H_2O$	30 g	141.4 mM	141.4 μM	
Each nutrient is dissolved in 1 liter distilled water.					

Vitamin prim. stock solution		Conc in stock	Final conc in medium	
B12 Biotin	100 mg	738 µM	0.37 nM	
Biotin	100 mg 100 mg	4.1 mM	2.05 nM	
Thiamindiclorid	20 g	593 mM	296 nM	
Dissolve all 3 in 100 ml dest. water. Pipette 1 ml portions in eppendorf vials and freeze.				
Working stock: Dilute each vial in 1 liter dest water.				

L1 Trace metal working stock		Conc in stock	Final conc in medium		
FeCl ₃ · 6H ₂ O	3.15 g	11.7 mM	11.7 μM		
Na ₂ -EDTA · 2H ₂ O	4.36 g	11.7 mM	11.7 μM		
Dissolve in 1 liter dest.water and add 1 ml of each primary stock solutions (Se below)					

L1 Trace metal primary stocks		Add to working stock	Final conc in medium	
CoCl ₂ ·6H ₂ 0	1.0 g	1 ml	50 nM	
CuSO ₄ · 5H ₂ 0	0.25 g	1 ml	10 nM	
H_2SeO_3	0.13 g	1 ml	10 nM	
K ₂ CrO ₄	0.194 g	1 ml	10 nM	
$MnCl_2 \cdot 4H_20$	18.0 g	1 ml	900 nM	
$Na_2MoO_4 \cdot 2H_2O$	1.89 g	1 ml	80 nM	
Na_3VO_4	0.184 g	1 ml	10 nM	
$Ni_3SO_4 \cdot 4H_2O$	0.27 g	1 ml	10 nM	
ZnSO ₄ · 7H ₂ 0	2.2 g	1 ml	80 nM	
Dissolve each of the 9 trace metals in 100 ml of dest. water (= Primary stock solutions).				

References.

Guillard, R.L. and Ryther, J. H. 1962. Studies of marine planktoic diatoms. I. *Cyclotella nana* Hustedt and *Detonula confervacea* (Cleve) Gran. *Can. J. Microbiol.* 8, 229-239. ('f'-medium).

Guillard, R.L.. Culture of Phytoplankton for feeding Marine Invertebrates. In: *Culture of Marine Invertebrate Animals.*, W. L. Smith and M. H. Chanley, eds., Plenum Press, New York,1975, pp. 29-60. (f/2 medium).

Guillard, R.L. and Hargraves, P.E., 1993. *Stichochrysis immobilis* is a diatom, not a chrysophyte. Phycologia 32:234-236 (L1-medium)

Schöne HK and Schöne A, 1982. A weakly enriched sea-water medium for ecological studies on marine plankton algae, some examples of itsapplication. Bot Mar 25:117-122 (Met 44-medium)

Stein, J. R., 1973, Handbook of Phycological Methods, Cambridge University Press, Cambridge, England, 448p. ('f', f/2, Z8 medium).